

Table of Content

TABLE OF CONTENT .. 2

FOREWORD... 6

FOREWORD... 7

PREFACE.. 8

WHO SHOULD READ THIS BOOK ... 8
WHAT YOU WILL LEARN ... 9
WHAT THIS BOOK DOES NOT COVER .. 9
HOW THIS BOOK IS ORGANIZED.. 10
ACKNOWLEDGEMENTS ...11
ABOUT THE COVER PICTURE ..11

INTRODUCTION... 12

WHAT IS MESSAGING? ... 13
WHAT IS A MESSAGING SYSTEM? .. 14
WHY USE MESSAGING?... 15
CHALLENGES OF ASYNCHRONOUS MESSAGING... 18
THINKING ASYNCHRONOUSLY ... 19
DISTRIBUTED APPLICATIONS VS. INTEGRATION ... 19
COMMERCIAL MESSAGING SYSTEMS... 20
PATTERN FORM .. 22
DIAGRAM NOTATION ... 24
EXAMPLES AND INTERLUDES... 25
ORGANIZATION OF THIS BOOK... 26
GETTING STARTED... 27
SUPPORTING WEB SITE.. 29
SUMMARY.. 29

1．SOLVING INTEGRATION PROBLEMS USING PATTERNS... 31

THE NEED FOR INTEGRATION... 31
INTEGRATION CHALLENGES... 32
HOW INTEGRATION PATTERNS CAN HELP .. 33
THE WIDE WORLD OF INTEGRATION.. 34
LOOSE COUPLING .. 37
1 MINUTE EAI ... 39
A LOOSELY COUPLED INTEGRATION SOLUTION ... 42
WIDGET-GADGET CORP -- AN EXAMPLE ... 44
SUMMARY.. 61

2．INTEGRATION STYLES.. 63

INTRODUCTION .. 63
APPLICATION INTEGRATION CRITERIA ... 63
APPLICATION INTEGRATION OPTIONS .. 64
FILE TRANSFER.. 65
SHARED DATABASE ... 68
REMOTE PROCEDURE INVOCATION.. 70
MESSAGING ... 72

3．MESSAGING SYSTEMS... 75

INTRODUCTION .. 75
MESSAGE CHANNEL .. 76
MESSAGE... 81
PIPES AND FILTERS .. 84
MESSAGE ROUTER... 91
MESSAGE TRANSLATOR... 96
MESSAGE ENDPOINT.. 105

4．MESSAGING CHANNELS ... 108

INTRODUCTION .. 108
POINT-TO-POINT CHANNEL...111
PUBLISH-SUBSCRIBE CHANNEL ..113
DATATYPE CHANNEL ..116
INVALID MESSAGE CHANNEL ...119
DEAD LETTER CHANNEL ... 122
GUARANTEED DELIVERY... 124
CHANNEL ADAPTER... 128
MESSAGING BRIDGE.. 132
MESSAGE BUS ... 135

5．MESSAGE CONSTRUCTION.. 140

INTRODUCTION .. 140
COMMAND MESSAGE .. 141
DOCUMENT MESSAGE ... 143
EVENT MESSAGE ... 145
REQUEST-REPLY .. 147
RETURN ADDRESS ... 151
CORRELATION IDENTIFIER ... 154
MESSAGE SEQUENCE... 159
MESSAGE EXPIRATION... 164
FORMAT INDICATOR... 167

6．INTERLUDE：SIMPLE MESSAGING .. 169

INTRODUCTION .. 169
JMS REQUEST/REPLY EXAMPLE.. 171
.NET REQUEST/REPLY EXAMPLE .. 182

JMS PUBLISH/SUBSCRIBE EXAMPLE ... 191

7．MESSAGE ROUTING ... 208

INTRODUCTION .. 208
CONTENT-BASED ROUTER..211
MESSAGE FILTER ... 217
DYNAMIC ROUTER .. 221
RECIPIENT LIST.. 226
SPLITTER ... 234
AGGREGATOR .. 242
RESEQUENCER... 255
COMPOSED MESSAGE PROCESSOR... 265
SCATTER-GATHER.. 267
ROUTING SLIP.. 270
PROCESS MANAGER .. 278
MESSAGE BROKER .. 286

8．MESSAGE TRANSFORMATION.. 291

INTRODUCTION .. 291
ENVELOPE WRAPPER... 292
CONTENT ENRICHER.. 297
CONTENT FILTER ... 302
CLAIM CHECK ... 305
NORMALIZER... 310
CANONICAL DATA MODEL... 312

9．INTERLUDE：COMPOSED MESSAGING... 317

INTRODUCTION .. 317
SYNCHRONOUS IMPLEMENTATION USING WEB SERVICES .. 324
ASYNCHRONOUS IMPLEMENTATION WITH MSMQ... 353
ASYNCHRONOUS IMPLEMENTATION WITH TIBCO ACTIVEENTERPRISE... 397

10．MESSAGING ENDPOINTS .. 415

INTRODUCTION .. 415
MESSAGING GATEWAY... 418
MESSAGING MAPPER... 426
TRANSACTIONAL CLIENT... 431
POLLING CONSUMER ... 439
EVENT-DRIVEN CONSUMER... 442
COMPETING CONSUMERS .. 446
MESSAGE DISPATCHER .. 451
SELECTIVE CONSUMER.. 457
DURABLE SUBSCRIBER .. 464
IDEMPOTENT RECEIVER... 469
SERVICE ACTIVATOR .. 472

11．SYSTEM MANAGEMENT ... 476

INTRODUCTION .. 476
CONTROL BUS ... 477
DETOUR... 481
WIRE TAP .. 482
MESSAGE HISTORY.. 484
MESSAGE STORE ... 487
SMART PROXY ... 489
TEST MESSAGE.. 498
CHANNEL PURGER... 500

12．INTERLUDE：SYSTEM MANAGEMENT EXAMPLE... 504

LOAN BROKER SYSTEM MANAGEMENT... 504

13．INTEGRATION PATTERNS IN PRACTICE ... 528

CASE STUDY: BOND TRADING SYSTEM ... 528
ARCHITECTURE WITH PATTERNS.. 529

14．CONCLUDING REMARKS.. 548

EMERGING STANDARDS AND FUTURES IN ENTERPRISE INTEGRATION.. 548

BIBLIOGRAPHY ... 569

Foreword

by John Crupi
What do you do when a new technology arrives? You learn the technology. This is exactly what I
did. I studied J2EE (being from Sun Microsystems, it seemed to be the logical choice). Specifically,
I focused on the EJB technology by reading the specifications (since there were no books yet).
Learning the technology, however, is just the first step—the real goal is to learn how to effectively
apply the technology. The nice thing about platform technologies is that they constrain you to
performing certain tasks. But, as far as the technology is concerned, you can do whatever you
want and quite often get into trouble if you don’t do things appropriately.

One thing I’ve seen in the past 15 years is that there seem to be two areas that software
developers obsess over: programming and designing—or more specifically, programming and
designing effectively. There are great books out there that tell you the most efficient way to
program certain things in Java and C#, but far fewer tell you how to design effectively. That’s
where this book comes in. When Deepak Alur, Dan Malks, and I wrote Core J2EE Patterns, we
wanted to help J2EE developers “design” better code. The best decision we made was to use
patterns as the artifact of choice. As James Baty, a Sun Distinguished Engineer, puts it, “Patterns
seem to be the sweet spot of design.” I couldn’t agree more, and luckily for us, Gregor and Bobby
feel the same way.

This book focuses on a hot and growing topic: integration using messaging. Not only is
messaging key to integration, but it will most likely be the predominant focus in Web services for
years to come. There is so much noise today in the Web services world, it’s a delicate and
complex endeavor just to identify the specifications and technologies to focus on. The goal
remains the same, however— software helps you solve a problem. Just as in the early days of
J2EE and .NET, there is not a lot of design help out there yet for Web services. Many people say
Web services is just a new and open way to solve our existing integration problems— and I agree.
But, that doesn’t mean we know how to design Web services. And that brings us to the gem of
this book. I believe this book has many of the patterns we need to design Web services and other
integration systems. Because the Web service specifications are still battling it out, it wouldn’t
have made sense for Bobby and Gregor to provide examples of many of the Web service
specifications. But, that’s okay. The real payoff will result when the specifications become
standards and we use the patterns in this book to design for those solutions that are realized by
these standards. Then maybe we can realize our next integration goal of designing for
service-oriented architectures.

Read this book and keep it by your side. It will enhance your software career to no end.

John Crupi
Bethesda, MD

August 2003

Foreword

by Martin Fowler
While I was working on my book Patterns of Enterprise Application Architecture, I was lucky to get
some in-depth review from Kyle Brown and Rachel Reinitz at some informal workshops at Kyle’s
office in Raleigh-Durham. During these sessions, we realized that a big gap in my work was
asynchronous messaging systems.

There are many gaps in my book, and I never intended it to be a complete collection of
patterns for enterprise development. But the gap on asynchronous messaging is particularly
important because we believe that asynchronous messaging will play an increasingly important
role in enterprise software development, particularly in integration. Integration is important
because applications cannot live isolated from each other. We need techniques that allow us to
take applications that were never designed to interoperate and break down the stovepipes so we
can gain a greater benefit than the individual applications can offer us.

Various technologies have been around that promise to solve the integration puzzle. We all
concluded that messaging is the technology that carries the greatest promise. The challenge we
faced was to convey how to do messaging effectively. The biggest challenge in this is that
messages are by their nature asynchronous, and there are significant differences in the design
approaches that you use in an asynchronous world.

I didn’t have space, energy, or frankly the knowledge to cover this topic properly in Patterns
of Enterprise Application Architecture. But we came up with a better solution to this gap: find
someone else who could. We hunted down Gregor and Bobby, and they took up the challenge.
The result is the book you’re about to read.

I’m delighted with the job that they have done. If you’ve already worked with messaging
systems, this book will systematize much of the knowledge that you and others have already
learned the hard way. If you are about to work with messaging systems, this book will provide a
foundation that will be invaluable no matter which messaging technology you have to work
with.

Martin Fowler
Melrose, MA
August 2003

Preface

This is a book about enterprise integration using messaging. It does not document any particular
technology or product. Rather, it is designed for developers and integrators using a variety of
messaging products and technologies, such as:

• Message-oriented middleware (MOM) and integration suites offered by vendors such as
the IBM (WebSphere MQ Family), Microsoft (BizTalk), TIBCO, WebMethods, SeeBeyond,
Vitria, and others

• Java Message Service (JMS) implementations incorporated into commercial and
open-source J2EE application servers as well as standalone products

• Microsoft’s Message Queuing (MSMQ), accessible through several API’s, including the
System.Messaging libraries in Microsoft .NET

• Emerging Web services standards that support asynchronous Web services (for example,
WS-ReliableMessaging) and the associated API’s such as Sun’s Java API for XML
Messaging (JAXM) or Microsoft’s Web Services Extensions (WSE).

Enterprise integration goes beyond creating a single application with a distributed n-tier
architecture, which enables a single application to be distributed across several computers.
Whereas one tier in a distributed application cannot run by itself, integrated applications are
independent programs that can each run by itself, yet that function by coordinating with each
other in a loosely coupled way. Messaging enables data or commands to be sent across the
network using a “send and forget” approach where the caller sends the information and then
goes on to other work while the information is transmitted by the messaging system. Optionally,
the caller can later be notified of the result through a callback. Asynchronous calls and callbacks
can make a design more complex than a synchronous approach, but an asynchronous call can be
retried until it succeeds, which makes the communication much more reliable. Asynchronous
messaging also enables several other advantages such as throttling of requests and load
balancing.

Who Should Read This Book

This book is designed to help application developers and system integrators connect applications
using message-oriented middleware products:

• Application architects and developers who design and build complex enterprise
applications that need to integrate with other applications. We assume that you’re
developing your applications using a modern enterprise application platform such as the
Java 2 Platform, Enterprise Edition (J2EE) or the Microsoft .NET framework. This book
will help you connect the application to a messaging layer and exchange information
with other applications. This book focuses on the integration of applications, not on

building applications; for that, we refer you to Patterns of Enterprise Application
Architecture by Martin Fowler.

• Integration architects and developers who design and build integration solutions
connecting packaged or custom applications. Most readers in this group will have
experience with one of the many commercial integration tools like IBM WebSphere MQ,
TIBCO, WebMethods, SeeBeyond, Vitria, etc. Many of these tools incorporate the patterns
presented in this book. This book helps readers understand the underlying concepts and
make confident design decisions using a vendor-independent vocabulary.

• Enterprise Architects have to maintain the "big picture" view of the software and
hardware assets in an enterprise. This book presents a consistent language to describe
large-scale integration solutions that may span across many technologies or point
solutions. This language is also a key enabler for efficient communication between the
enterprise architect and the integration and application architects and developers.

What You Will Learn

This book does not attempt to make a business case for enterprise application integration; the
focus is on how to make it work. Readers of this book will learn how to integrate enterprise
applications by understanding:

• The advantages and limitations of messaging as compared to other integration techniques
• How to determine the message channels your applications will need, how to control

whether multiple consumers can receive the same message, and how to handle invalid
messages

• When to send a message, what it should contain, and how to use special message
properties

• How to route a message to its ultimate destination even when the sender does not know
where that is

• How to convert messages when the sender and receiver do not agree on a common
format

• How to design the code that connects an application to the messaging system
• How to manage and monitor a messaging system once it’s in use as part of the enterprise

Even readers who are familiar with these practices will benefit from having them documented
and being able to use them to facilitate communication with their colleagues.

What This Book Does Not Cover

We believe that any book sporting the word "enterprise" in the title is likely to fall into one of
three categories. Either it attempts to cover the whole breadth of the subject matter and will be
forced to stop short of detailed guidance on how to implement actual solutions. Or, the book will
provide specific hands-on guidance on the development of actual solutions but is forced to
constrain the scope of the subject area it addresses. Lastly, books that attempt to do both are

likely to never get finished or are published so late as to be irrelevant. We opted for the second
choice and hopefully created a book that helps people create better integration solutions even
though we had to limit the scope of the book. Topics that we would have loved to discuss but
had to exclude in order not to fall into the category three trap include security, complex data
mapping, workflow, rule engines, scalability and robustness, and distributed transaction
processing (XA, Tuxedo and the like). We chose asynchronous messaging as the emphasis for this
book because it is full of interesting design issues and trade-offs and provides a clean abstraction
from the many implementation provided by various integration vendors.

This book is also not a tutorial on a specific messaging or middleware technology. You will find
examples based on a number of different technologies in this book, such as JMS, MSMQ, TIBCO,
Microsoft BizTalk, XSL etc. We included these examples for illustrative purposes to show readers
how the pattern could be translated into an actual implementation. If you are interested in
learning more about any of these specific technologies, please refer to one of the books referenced
in the bibliography or one of the many on-line resources.

How This Book Is Organized

The core of the book contains 65 patterns that form a pattern language. Books such as Design
Patterns, Pattern Oriented Software Architecture, Core J2EE Patterns, and Patterns of Enterprise
Application Architecture have popularized the notion of using patterns to document
computer-programming techniques. The concept of patterns and pattern languages was
originally applied to city and building architecture by Christopher Alexander in his seminal
works A Pattern Language and A Timeless Way of Building. To help the reader design an integration
solution, each pattern represents a decision that the reader must make, explains the
considerations that affect the decision, and presents a well regarded solution to guide the
decision. A pattern language is a web of related patterns where each pattern leads to others,
guiding the reader through the decision making process. This approach is a powerful technique
for documenting an expert’s knowledge so that it can be readily understood and applied by
non-experts.

A pattern language teaches the reader how to solve a limitless variety of problems within a
bounded problem space. Because the overall problem that is being solved is different every time,
the path through the patterns and how they’re applied is also unique. In this way, this book was
written for anyone using any messaging or integration tools for any purpose, but can be applied
specifically for you and the specific application of messaging that you are facing.

Patterns describe commonly accepted solutions to recurring problems, so if you’re an
experienced developer of message-oriented integration solutions, many of these patterns will
seem familiar to you. Yet even if you already recognize most of these patterns, there is still value
in reviewing this book. This book should validate your hard-earned understanding of how to use
messaging. It gives you a consolidated reference to help you pass your knowledge effectively to
less-experienced colleagues. It also documents details of the solutions and relationships between

them that you may not have been aware of. Finally, the pattern names give you a common
vocabulary to efficiently discuss integration design alternatives with your peers.

Acknowledgements

Like most books, Enterprise Integration Patterns has been a long time in the making. The idea of
writing about message-based integration patterns dates back to the summer of 2001 when Martin
was working on Patterns of Enterprise Application Architecture. At that time, it struck Kyle that
while P of EAA talked a lot about how to create applications, it touches only briefly on how to
integrate them. This idea was the starting point for a series of meetings between Martin and Kyle
that also included Rachel Reinitz and John Crupi. Bobby joined these discussions in the fall of
2001, followed by Gregor in early 2002. The following summer the group submitted two papers
for review at the Pattern Languages of Programs (PLoP) conference, one authored jointly by
Bobby and Kyle and the other by Gregor. After the conference, Kyle and Martin refocused on
their own book projects while Gregor and Bobby merged their papers to form the basis for the
book. At the same time, the www.enterpriseintegrationpatterns.com site went live to allow
integration architects and developers around the world to participate in the rapid evolution of
the content. As they worked on the book, Gregor and Bobby invited contributors to help round
out the book’s content. About two years after Kyle's original idea, the final manuscript arrived at
the publisher.

This book would not have been possible without the help from a long list of contributors. Names
here...

About the Cover Picture

The common theme for books in the Martin Fowler Signature Series is a picture of a bridge. In
some sense we lucked out, because what theme would make a better match for a book on
integration? For Thousands of years, bridges have helped connect people from different shores,
mountains or sides of the road.

We selected a picture of the Taiko-bashi Bridge at the Sumiyoshi-taisha Shrine in Osaka, Japan
for its simple elegance and beauty. As a Shinto shrine dedicated to the guardian deity for sailors,
it was originally erected next to the water. Interestingly, land reclamation has pushed the water
away so that the shrine today stands almost three miles inland. Some 3 million people visit this
shrine at the beginning of a new year.

Introduction

Interesting applications rarely live in isolation. Whether your sales application must interface
with your inventory application, your procurement application must connect to an auction site,
or your PDA’s PIM must synchronize with the corporate calendar server, it seems like any
application can be made better by integrating it with other applications.

All integration solutions have to deal with a few fundamental challenges:

• Networks are unreliable. Integration solutions have to transport data from one computer to
another across networks. Compared to a process running on a single computer,
distributed computing has to be prepared to deal with a much larger set of possible
problems. Often times, two systems to be integrated are separated by continents and data
between them has to travel through phone-lines, LAN segments, routers, switches, public
networks, and satellite links. Each of these steps can cause delays or interruptions.

• Networks are slow. Sending data across a network is multiple orders of magnitude slower
than making a local method call. Designing a widely distributed solution the same way
you would approach a single application could have disastrous performance
implications.

• Any two applications are different. Integration solutions need to transmit information
between systems that use different programming languages, operating platforms, and
data formats. An integration solution needs to be able to interface with all these different
technologies.

• Change is inevitable. Applications change over time. An integration solution has to keep
pace with changes in the applications it connects. Integration solutions can easily get
caught in an avalanche effect of changes – if one system changes, all other systems may
be affected. An integration solution needs to minimize the dependencies from one system
to another by using loose coupling between applications.

Over time, developers have overcome these challenges with four main approaches:

1. File Transfer — One application writes a file that another later reads. The applications
need to agree on the filename and location, the format of the file, the timing of when it
will be written and read, and who will delete the file.

2. Shared Database — Multiple applications share the same database schema, located in a
single physical database. Because there is no duplicate data storage, no data has to be
transferred from one application to the other.

3. Remote Procedure Invocation — One application exposes some of its functionality so that it
can be accessed remotely by other applications as a remote procedure. The
communication occurs real-time and synchronously.

4. Messaging — One applications publishes a message to a common message channel. Other
applications can read the message from the channel at a later time. The applications must

agree on a channel as well as the format of the message. The communication is
asynchronous.

While all four approaches solve essentially the same problem, each style has its distinct
advantages and disadvantages. In fact, applications may integrate using multiple styles such that
each point of integration takes advantage of the style that suits it best.

What is Messaging?

This book is about how to use messaging to integrate applications. A simple way to understand
what messaging does is to consider the telephone system. A telephone call is a synchronous form
of communication. I can only communicate with the other party if the other party is available at
the time I place the call. Voice mail on the other hand, allows asynchronous communication. With
voice mail, when the receiver does not answer, the caller can leave him a message; later the
receiver (at his convenience) can listen to the messages queued in his mailbox. Voice mail enables
the caller to leave a message now so that the receiver can listen to it later, which is lot easier than
trying to get the caller and the receiver on the phone at the same time. Voice mail bundles (at
least part of) a phone call into a message and queues it for later consumption; this is essentially
how messaging works.

Messaging is a technology that enables high-speed, asynchronous, program-to-program
communication with reliable delivery. Programs communicate by sending packets of data called
messages to each other. Channels, also known as queues, are logical pathways that connect the
programs and convey messages. A channel behaves like a collection or array of messages, but one
that is magically shared across multiple computers and can be used concurrently by multiple
applications. A sender or producer is a program that sends a message by writing the message to a
channel. A receiver or consumer is a program that receives a message by reading (and deleting) it
from a channel.

The message itself is simply some sort of data structure—such as a string, a byte array, a record,
or an object. It can be interpreted simply as data, as the description of a command to be invoked
on the receiver, or as the description of an event that occurred in the sender. A message actually
contains two parts, a header and a body. The header contains meta-information about the
message—who sent it, where it’s going, etc.; this information is used by the messaging system
and is mostly (but not always) ignored by the applications using the messages. The body contains
the data being transmitted and is ignored by the messaging system. In conversation, when an
application developer who is using messaging talks about a message, he’s usually referring to the
data in the body of the message.

Asynchronous messaging architectures are powerful, but require us to rethink our development
approach. As compared to the other three integration approaches, relatively few developers have
had exposure to messaging and message systems. As a result, application developers in general
are not as familiar with the idioms and peculiarities of this communications platform.

What is a Messaging System?

Messaging capabilities are typically provided by a separate software system called a messaging
system or message-oriented middleware (MOM). A messaging system manages messaging the way a
database system manages data persistence. Just as an administrator must populate the database
with the schema for an application’s data, an administrator must configure the messaging system
with the channels that define the paths of communication between the applications. The
messaging system then coordinates and manages the sending and receiving of messages. The
primary purpose of a database is to make sure each data record is safely persisted, and likewise
the main task of a messaging system is to move messages from the sender’s computer to the
receiver’s computer in a reliable fashion.

The reason a messaging system is needed to move messages from one computer to another is that
computers and the networks that connect them are inherently unreliable. Just because one
application is ready to send a communication does not mean that the other application is ready to
receive it. Even if both applications are ready, the network may not be working, or may fail to
transmit the data properly. A messaging system overcomes these limitations by repeatedly trying
to transmit the message until it succeeds. Under ideal circumstances, the message is transmitted
successfully on the first try, but circumstances are often not ideal.

In essence, a message is transmitted in five steps:

1. Create — The sender creates the message and populates it with data.
2. Send — The sender adds the message to a channel.
3. Deliver — The messaging system moves the message from the sender’s computer to the

receiver’s computer, making it available to the receiver.
4. Receive — The receiver reads the message from the channel.
5. Process — The receiver extracts the data from the message.

This diagram illustrates these five transmission steps, which computer performs each, and which
steps involve the messaging system:

Message Transmission Step-by-step

This diagram also illustrates two important messaging concepts:

1. Send and forget — In step 2, the sending application sends the message to the message
channel. Once that send is complete, the sender can go on to other work while the
messaging system transmits the message in the background. The sender can be confident
that the receiver will eventually receive the message and does not have to wait until that
happens.

2. Store and forward — In step 2, when the sending application sends the message to the
message channel, the messaging system stores the message on the sender’s computer,
either in memory or on disk. In step 3, the messaging system delivers the message by
forwarding it from the sender’s computer to the receiver’s computer, and then stores the
message once again on the receiver’s computer. This store-and-forward process may be
repeated many times, as the message is moved from one computer to another, until it
reaches the receiver’s computer.

The create, send, receive, and process steps may seem like unnecessary overhead. Why not
simply deliver the data to the receiver? By wrapping the data as a message and storing it in the
messaging system, the applications delegate to the messaging system the responsibility of
delivering the data. Because the data is wrapped as an atomic message, delivery can be retried
until it succeeds and the receiver can be assured of reliably receiving exactly one copy of the data.

Why Use Messaging?

Now that we know what messaging is, we should ask: Why use messaging? As with any
sophisticated solution, there is no one simple answer. The quick answer is that messaging is more
immediate than File Transfer, better encapsulated than Shared Database, and more reliable than
Remote Procedure Invocation. However, that’s just the beginning of the advantages that can be
gained using messaging.

Specific benefits of messaging include:

• Remote Communication. Messaging enables separate applications to communicate and
transfer data. Two objects that reside in the same process can simply share the same data
in memory. Sending data to another computer is a lot more complicated and requires
data to be copied from one computer to another. This means that objects have to
"serializable", i.e. they can be converted into a simple byte stream that can be sent across
the network. If remote communication is not needed, messaging is not needed; a simpler
solution such as concurrent collections or shared memory is sufficient.

• Platform/Language Integration.When connecting multiple computer systems via remote
communication, these systems likely use different languages, technologies and platforms,
perhaps because they were developed over time by independent teams. Integrating such
divergent applications can require a demilitarized zone of middleware to negotiate
between the applications, often using the lowest common denominator—such as flat data
files with obscure formats. In these circumstances, a messaging system can be a universal
translator between the applications that works with each one’s language and platform on
its own terms, yet allows them to all communicate through a common messaging
paradigm. This universal connectivity is the heart of the Message Bus pattern.

• Asynchronous Communication. Messaging enables a send and forget approach to
communication. The sender does not have to wait for the receiver to receive and process
the message; it does not even have to wait for the messaging system to deliver the
message. The sender only needs to wait for the message to be sent, e.g. for the message to
successfully be stored in the channel by the messaging system. Once the message is
stored, the sender is then free to perform other work while the message is transmitted in
the background. The receiver may want to send an acknowledgement or result back to
the sender, which requires another message, whose delivery will need to be detected by a
callback mechanism on the sender.

• Variable Timing. With synchronous communication, the caller must wait for the receiver to
finish processing the call before the caller can receive the result and continue. In this way,
the caller can only make calls as fast as the receiver can perform them. On the other hand,
asynchronous communication allows the sender to batch requests to the receiver at its
own pace, and for the receiver to consume the requests at its own different pace. This
allows both applications to run at maximum throughput and not waste time waiting on
each other (at least until the receiver runs out of messages to process).

• Throttling. A problem with remote procedure calls is that too many of them on a single
receiver at the same time can overload the receiver. This can cause performance
degradation and even cause the receiver to crash. Asynchronous communication enables
the receiver to control the rate at which it consumes requests, so as not to become
overloaded by too many simultaneous requests. The adverse effect on callers caused by
this throttling is minimized because the communication is asynchronous, so the callers
are not blocked waiting on the receiver.

• Reliable Communication. Messaging provides reliable delivery that a remote procedure call
(RPC) cannot. The reason messaging is more reliable than RPC is that messaging uses a
store and forward approach to transmitting messages. The data is packaged as messages,
which are atomic, independent units. When the sender sends a message, the messaging
system stores the message. It then delivers the message by forwarding it to the receiver’s

computer, where it is stored again. Storing the message on the sender’s computer and the
receiver’s computer is assumed to be reliable. (To make it even more reliable, the
messages can be stored to disk instead of memory; see Guaranteed Delivery.) What is
unreliable is forwarding (moving) the message from the sender’s computer to the
receiver’s computer, because the receiver or the network may not be running properly.
The messaging system overcomes this by resending the message until it succeeds. This
automatic retry enables the messaging system to overcome problems with the network
such that the sender and receiver don’t have to worry about these details.

• Disconnected Operation. Some applications are specifically designed to run disconnected
from the network, yet to synchronize with servers when a network connection is
available. Such applications are deployed on platforms like laptop computers, PDA’s, and
automobile dashboards. Messaging is ideal for enabling these applications to
synchronize—data to be synchronized can be queued as it is created, waiting until the
application reconnects to the network.

• Mediation. The messaging system acts as a mediator—as in the Mediator pattern
[GoF]—between all of the programs that can send and receive messages. An application
can use it as a directory of other applications or services available to integrate with. If an
application becomes disconnected from the others, it need only reconnect to the
messaging system, not to all of the other messaging applications. The messaging system
can be used to provide a high number of distributed connections to a shared resource,
such as a database. The messaging system can employ redundant resources to provide
high-availability, balance load, reroute around failed network connections, and tune
performance and quality of service.

• Thread Management. Asynchronous communication means that one application does not
have to block while waiting for another application to perform a task, unless it wants to.
Rather than blocking to wait for a reply, the caller can use a callback that will alert the
caller when the reply arrives. (See the Request-Reply pattern.) A large number of blocked
threads, or threads blocked for a long time, can be problematic. Too many blocked
threads may leave the application with too few available threads to perform real work. If
an application with some dynamic number of blocked threads crashes, when the
application restarts and recovers its former state, re-establishing those threads will be
difficult. With callbacks, the only threads that block are a small, known number of
listeners waiting for replies. This leaves most threads available for other work and defines
a known number of listener threads that can easily be re-established after a crash.

So there are a number of different reasons an application or enterprise may benefit from
messaging. Some of these are technical details that application developers relate most readily to,
whereas others are strategic decisions that resonate best with enterprise architects. Which of these
reasons is most important depends on the current requirements of your particular applications.
They’re all good reasons to use messaging, so take advantage of whichever reasons provide the
most benefit to you.

Challenges of Asynchronous Messaging

Asynchronous messaging is not the panacea of integration. It resolves many of the challenges of
integrating disparate systems in an elegant way but it also introduces new challenges. Some of
these challenges are inherent in the asynchronous model while other challenges vary with the
specific implementation of a messaging system.

• Complex programming model. Asynchronous messaging requires developers to work with
an event-driven programming model. Application logic can no longer be coded in a
single method that invokes other methods, but the logic is not split up into a number of
event handlers that respond to incoming messages. Such a system is more complex and
harder to develop and debug. For example, the equivalent of a simple method call can
require a request message and a request channel, a reply message and a reply channel, a
correlation identifier and an invalid message queue (as described in Request-Reply).

• Sequence issues. Message channels guarantee message delivery, but they do not guarantee
when the message will be delivered. This can cause messages that are sent in sequence to
get out of sequence. In situations where messages depend on each other special care has
to be taken to re-establish the message sequence.

• Synchronous scenarios. Not all applications can operate in a send and forget mode. If a user
is looking for airline tickets, he or she is going to want to see the ticket price right away,
not after some undetermined time. Therefore, many messaging systems need to bridge
the gap between synchronous and asynchronous solutions. (See the Request-Reply
pattern.)

• Performance. Messaging systems do add some overhead to communication. It takes effort
to make data into a message and send it, and to receive a message and process it. If you
have to transport a huge chunk of data, dividing it into a gazillion small pieces may not
be a smart idea. For example, if an integration solution needs to synchronize information
between two exiting systems, the first step is usually to replicate all relevant information
from one system to the other. For such a bulk data replication step, ETL (extract,
transform, and load) tools are much more efficient than messaging. Messaging is best
suited to keeping the systems in sync after the initial data replication.

• Limited platform support. Many proprietary messaging systems are not available on all
platforms. Often times it is easier to FTP a file to another platform than accessing it via a
messaging system.

• Vendor lock-in. Many messaging system implementations rely on proprietary protocols.
Even common messaging specifications such as JMS do not control the physical
implementation of the solution. As a result, different messaging systems usually do not
connect to one another. This can leave you with a whole new integration challenge:
integrating multiple integration solutions! (See the Messaging Bridge pattern.)

So asynchronous messaging does not solve all problems, and can even create some new ones.
Keep these consequences in mind when deciding which problems to solve using messaging.

Thinking Asynchronously

Messaging is an asynchronous technology, which enables delivery to be retried until it succeeds.
In contrast, most applications use synchronous function calls; for example: a procedure calling a
sub-procedure, one method calling another method, or one procedure invoking another remotely
through a remote procedure call (RPC) (such as CORBA and DCOM). Synchronous calls imply
that the calling process is halted while the sub-process is executing a function. Even in an RPC
scenario, where the called sub-procedure executes in a different process, the caller blocks until
the sub-procedure returns control (and the results) to the caller. When using asynchronous
messaging, the caller uses a send and forget approach that allows it to continue to execute after it
sends the message. As a result, the calling procedure continues to run while the sub-procedure is
being invoked.

Synchronous and Asynchronous Call Semantics

Asynchronous communication has a number of implications. First, we no longer have a single
thread of execution. Multiple threads enable sub-procedures to run concurrently, which can
greatly improve performance and help ensure that some sub-processes are making progress even
while other sub-processes may be waiting for external results. However, concurrent threads can
also make debugging much more difficult. Second, results (if any) arrive via a callback. This
enables the caller to perform other tasks and be notified when the result is available, which can
improve performance. However, the caller has to be able to process the result even while it is in
the middle of other tasks, and it has to be able to use the result to remember the context in which
the call was made. Third, asynchronous sub-processes can execute in any order. Again, this
enables one sub-procedure to make progress even while another cannot. But it also means that
the subprocesses must be able to run independently in any order, and the caller must be able to
determine which result came from which sub-process and combine the results together. So
asynchronous communication has several advantages but requires rethinking how a procedure
uses its sub-procedures.

Distributed Applications vs. Integration

This book is about enterprise integration—how to integrate independent applications so that they
can work together. An enterprise application often incorporates an n-tier architecture (a more

sophisticated version of a client/server architecture) enabling it to be distributed across several
computers. Even though this results in processes on different machines communicating with each
other, this is application distribution, not application integration.

Why is an n-tier architecture considered application distribution and not application integration?
First, the communicating parts are tightly coupled—they dependent directly on each other, so
that one tier cannot function without the others. Second, communication between tiers tends to
be synchronous. Third, an application (n-tier or atomic) tends to have human users that will only
accept rapid system response.

In contrast, integrated applications are independent applications that can each run by itself, but
coordinate with each other in a loosely coupled way. This enables each application to focus on
one comprehensive set of functionality and yet delegate to other applications for related
functionality. Integrated applications communicating asynchronously don’t have to wait for a
response; they can proceed without a response or perform other tasks concurrently until the
response is available. Integrated applications tend to have a broad time constraint, such that they
can work on other tasks until a result becomes available, and therefore are more patient than
most human users waiting real-time for a result.

Commercial Messaging Systems

The apparent benefits of integrating systems using an asynchronous messaging solution have
opened up a significant market for software vendors creating messaging middleware and
associated tools. We can roughly group the messaging vendors’ products into the following four
categories:

1. Operating Systems. Messaging has become such a common need that vendors have started
to integrate the necessary software infrastructure into the operating system or database
platform. For example, the Microsoft Windows 2000 and Windows XP operating systems
include the Microsoft Message Queuing (MSMQ) service software. This service is
accessible through a number of API’s, including COM components and the
System.Messaging namespace, part of the Microsoft .NET platform. Similarly, Oracle
offers Oracle AQ as part of its database platform.

2. Application Servers. Sun Microsystems first incorporated the Java Messaging Service (JMS)
into version 1.2 of the J2EE specification. Since then, virtually all J2EE application servers
(such as IBM WebSphere, BEA WebLogic, etc.) provide an implementation for this
specification. Also, Sun delivers a JMS reference implementation with the J2EE JDK.

3. EAI Suites. Products from these vendors offer proprietary—but functionally rich—suites
that encompass messaging, business process automation, workflow, portals, and other
functions. Key players in this marketplace are IBM WebSphere MQ, Microsoft BizTalk,
TIBCO, WebMethods, SeeBeyond, Vitria, CrossWorlds, and others. Many of these
products include JMS as one of the many client API’s they support, while other
vendors—such as SonicSoftware and Fiorano—focus primarily on implementing
JMS-compliant messaging infrastructures.

4. Web Services Toolkits. Web services have garnered a lot of interest in the enterprise
integration communities. Standards bodies and consortia are actively working on
standardizing reliable message delivery over web services (i.e., WS-Reliability,
WS-ReliableMessaging, and ebMS). A growing number of vendors offer tools that
implement routing, transformation, and management of web services-based solutions.

The patterns in this book are vendor-independent and apply to most messaging solutions.
Unfortunately, each vendor tends to define their own terminology when describing messaging
solutions. In this book we have striven to choose pattern names that are technology- and
product-neutral, yet descriptive and easy to use conversationally.

Many messaging vendors have incorporated some of this book’s patterns as features of their
products, which simplifies applying the patterns and accelerates solution development. Readers
who are familiar with a particular vendor’s terminology will most likely recognize many of the
concepts in this book. To help these readers map the pattern language to the vendor-specific
terminology, the following tables map the most common pattern names to their corresponding
product feature names in some of the most widely-used messaging products.

Enterprise Integration
Patterns

Java Message Service (JMS) Microsoft MSMQ WebSphere MQ

Message Channel Destination MessageQueue Queue

Point-to-Point Channel Queue MessageQueue Queue

Publish-Subscribe
Channel

Topic --- ---

Message Message Message Message

Message Endpoint
MessageProducer,
MessageConsumer

Enterprise
Integration Patterns

TIBCO WebMethods SeeBeyond Vitria

Message Channel Topic Intelligent Queue Channel

Point-to-Point
Channel

Distributed
Queue

 Intelligent Queue Channel

Publish-Subscribe
Channel

Subject --- Intelligent Queue
Pub/Sub
Channel

Message Message Document Event Event

Message Endpoint
Publisher,
Subscriber

Publisher,
Subscriber

Publisher,
Subscriber

Publisher,
Subscriber

Pattern Form

This book is structured as a set of patterns organized into a pattern language. Books such as
Design Patterns, Pattern Oriented Software Architecture, Core J2EE Patterns, and Patterns of Enterprise
Application Architecture have popularized the concept of using patterns to document
computer-programming techniques. Christopher Alexander pioneered the concept of patterns
and pattern languages in his books A Pattern Language and A Timeless Way of Building. Each
pattern represents a decision that the reader must make and the considerations that go into that
decision. A pattern language is a web of related patterns where each pattern leads to others,
guiding the reader through the decision making process. This approach is a powerful technique
for documenting an expert’s knowledge so that it can be readily understood and applied by
non-experts.

A pattern language teaches the reader how to solve a limitless variety of problems within a
bounded problem space. Because the overall problem that is being solved is different every time,
the path through the patterns and how they’re applied is also unique. In this way, this book was
written for anyone using any messaging tools for any application, but can be applied specifically
for you and the specific application of messaging that you are facing.

Just using the pattern form does not guarantee that a book contains a wealth of knowledge. It is
not just enough to simply say, “When you face this problem, apply this solution.” For a reader to
truly learn from a pattern, it has to document why the problem is difficult to solve, consider
possible solutions that in fact don’t work well, and explain why the solution offered is the best
available. Likewise, the patterns need to connect to each other so as to walk the reader from one
problem to the next. In this way, the pattern form can be used to teach the reader not just what
solutions to apply, but how to solve problems the author could not have predicted. These are
goals we strive to accomplish in this book.

Patterns should be prescriptive, meaning that they should tell you what to do. They don’t just
describe a problem, and they don’t just describe how to solve it, they tell you what to do to solve
it. Each pattern represents a decision the reader must make: “Should I use Messaging?” “Would a
Reply Message help me here?” The point of the patterns and the pattern language is to help the
reader make decisions that lead to a good solution for his specific problem, even if the authors
didn’t have that specific problem in mind, and even if the reader doesn’t have the knowledge and
experience to develop that solution on his own.

There is no one universal pattern form; different books use various structures. We used a style
that is fairly close to the Alexandrian form, which was first popularized for computer
programming in Smalltalk Best Practice Patterns by Kent Beck. We like the Alexandrian form
because it results in patterns that are more prose-like. As a result, even though each pattern
follows an identical, well-defined structure, the format avoids headings for each individual
sub-section, which disrupt the flow of the discussion. To improve navigability, the format uses
style elements such as bolding, indentation, and pictures to help the reader identify important
sections even at a quick glance.

This pattern language uses the following pattern structure:

• Name – This is an identifier for the pattern that indicates what the pattern does. We chose
names that can easily be used in a sentence that describes applying the pattern so that it is
easy to reference the pattern’s concept in a conversation between designers.

• Icon – Many patterns are associated with an icon in addition to the pattern name. Because
many architects are used to communicating visually by using diagrams, we wanted to
provide a visual language in addition to the verbal language. This visual language
underlines the composability of the patterns as multiple pattern icons can be combined to
describe the solution of a larger, more complex pattern.

• Context – This explains what you might be working on that would make you likely to run
into the problem that this pattern solves. The context sets the stage for the problem and
often refers to other patterns you may have already applied.

• Problem – This explains the difficulty you are facing, expressed as a question you’re
asking yourself, which this pattern solves. You should be able to read the problem
statement and quickly determine if this pattern is relevant to your work. We’ve formatted
the problem to be one sentence, bold and indented.

• Forces – The forces explore the constraints that make the problem difficult to solve. If it
were easy, you wouldn’t need a pattern. They often consider alternative solutions that
seem promising but don’t pan out, which helps show the value of the real solution.

• Solution – This is a template that explains what you should do to solve the problem. It is
not specific to your particular circumstances, but describes what to do in the variety of
circumstances represented by the problem. If you understand a pattern’s problem and
solution, you understand the pattern and don’t necessarily need to read the other sections.
We’ve formatted the solution to be one sentence, bold and indented.

• Sketch – One of the most appealing properties of the Alexandrian form is that each pattern
contains a sketch that illustrates the solution. In many cases, just by looking at the pattern
name and the sketch you can understand the essence of the pattern. We tried to maintain
this style by inserting a solution picture, or sketch, after the solution statement of each
pattern.

• Results – This part expands upon the solution to explain the details of how to apply the
solution and how it resolves the forces. It also addresses new challenges that may arise as
a result of applying this pattern.

• Next – This section lists other patterns to be considered after applying the current one.
Patterns don’t live in isolation; the application of one pattern usually leads you to new
problems that are solved by other patterns. This is what makes the collection a pattern
language and not just a pattern catalog.

• Sidebars – These sections discuss more detailed technical issues or variations of the
pattern. We set these sections visually apart from the remainder of the text so you can
easily skip them if they are not be relevant to your particular application of the pattern.

• Examples – A pattern usually includes one or more examples of the pattern being applied
or having been applied. An example may be as simple as naming a known use or as
detailed as a large segment of sample code. Given the large number of available
messaging technologies, we do not expect readers to be familiar with each technology

used to implement an example. Therefore, we designed the patterns so that you can
safely skip the example without loosing any critical content of the pattern.

The beauty in describing solutions as patterns is that it not only teaches the reader how to solve
the specific problems discussed, but also how to create designs that solve problems the authors
were not even aware of. As a result, these patterns for messaging describe not only messaging
systems that exist today, but may also apply to new ones created well after this book is
published.

Diagram Notation

Integration solutions consist of many different pieces—applications, databases, endpoints,
channels, messages, routers, etc. If we want to describe an integration solution, we need to define
a notation that accommodates all these different components. To our knowledge, there is no
widely used, comprehensive notation that is geared towards the description of all aspects of an
integration solution. The Unified Modeling Language (UML) does a fine job of describing
object-oriented systems with class and interaction diagrams, but it does not contain semantics to
describe messaging solutions. The UML Profile for EAI [UMLEAI] enriches the semantics of
collaboration diagrams to describe message flows between components. This notation is very
useful as a precise visual description of a system that can serve as the basis for code generation as
part of a model-driven architecture (MDA). We decided not to adopt this notation for two
reasons. First, the UML Profile does not capture all the patterns described in our pattern
language. Second, we were not looking to create a precise visual specification, but images that
have a certain ‘sketch’ quality to them. We wanted pictures that are able to convey the essence of
a pattern to the reader at a quick glance—very much like Alexander’s sketch. That’s why we
decided to create our own ‘notation’. Luckily, unlike the more formal notation, ours does not
require you to read a large manual. A simple picture should suffice:

Visual Notation for Messaging Solutions

This simple picture shows a message being sent to a component over a channel. We use the word
component very loosely here—it can indicate an application that is being integrated, an
intermediary that transforms or routes the message between applications, or a specific part of an
application. Sometimes, we also depict a channel as a three-dimensional pipe if we want to
highlight the channel itself. Often times we are more interested in the components and draw the
channels as simple lines with arrow heads. The two notations are equivalent. We depict the
message as a small tree with a round root and nested, square elements. The tree elements can be
shaded or colored to highlight their usage in a particular pattern. Many messaging systems allow

messages to contain tree-like data structures, for example XML documents. Also, depicting
messages in this way allows us to provide a quick visual description of transformation
patterns—it will be easy to show a pattern that adds, re-arranges or removes fields from the
message.

When we describe application designs—for example, messaging endpoints or examples written
in C# or Java—we do use standard UML class and sequence diagrams to depict the class
hierarchy and the interaction between objects. The UML notation is widely accepted as the
standard way of describing these types of solutions (if you need a refresher on UML, have a look
at [UML]).

Examples and Interludes

We have tried to underline the broad applicability of the patterns by including implementation
examples using a variety of integration technologies. The potential downside of this approach is
that you may not be familiar with each technology that is being used in an example. That’s why
we made sure that reading the examples is strictly optional — all relevant points are discussed in
the pattern description. Therefore, you can safely skip the examples without risk of losing out on
important detail. Also, where possible, we provided more than one implementation example
using different technologies.

When presenting example code we focused on readability over runnability. A code segment can
help remove any potential ambiguity left by the solution description and many application
developers and architects prefer looking at 30 lines of code as opposed to reading many
paragraphs of text. To support this intent we often only show the most relevant methods or
classes of a potentially larger solution. We also omitted most forms of error checking to highlight
the core function implemented by the code. Most code snippets do not contain in-line comments
as the code is explained in the paragraphs before and after the code segment.

Providing a meaningful example for a single integration pattern is challenging. Enterprise
integration solutions typically consist of a number of heterogeneous components, spread across
multiple systems. Likewise, most integration patterns do not operate in isolation but rely on
other patterns to form a meaningful solution. To highlight the collaboration between multiple
patterns we included more comprehensive examples as interludes at the end of the major
sections of the book. These solutions illustrate many of the trade-offs involved in designing a
more comprehensive messaging solution.

All code samples should be treated as illustrative tools only and not as a starting point for
development of an integration solution. For example, almost all examples lack any form of error
checking or concern for robustness, security, or scalability.

We tried as much as possible to base the examples on software platforms that are available free of
charge or as a trial version. In some cases, we used commercial platforms (such as TIBCO
ActiveEnterprise or Microsoft BizTalk) to illustrate the difference between developing a solution

from scratch and using a commercial tool. We presented those example in such a way that they
are educational even if you do not have access to the required run-time platform. For many
examples, we use relatively bare-bones messaging frameworks such as JMS or MSMQ. This
allows us to be more explicit in the example and focus on the problem at hand instead of
distracting from it with all the features a more complex middleware toolset may provide.

The Java examples in this book are based on the JMS 1.1 specification, which is part of the J2EE
1.4 specification. By the time this book is published, most messaging and application server
vendors will support JMS 1.1. You can download Sun’s reference implementation of the JMS
specification from Sun’s Web site: http://java.sun.com/j2ee.

The Microsoft .NET examples are based on Version 1.1 of the .NET Framework and are written in
C#. You can download the .NET Framework SDK from Microsoft’s Web site:
http://msdn.microsoft.com/net.

Organization of this Book

The pattern language in this book, as with any pattern language, is a web of patterns referring to
each other. At the same time, some patterns are more fundamental than others, forming a
hierarchy of big-concept patterns that lead to finer-detailed patterns. The big-concept patterns
form the load-baring members of the pattern language. They are the main ones, what we term
root patterns, that provide the foundation of the language and support the other patterns.

This book groups patterns into chapters by level-of-abstraction and by topic area. The following
diagram shows the root patterns and their relationship to the chapters of the book.

Relationship of Root Patterns and Chapters

The most fundamental pattern is Messaging; that’s what this whole book is about. It leads to the
six root patterns—which are in the Messaging Systems chapter—namely Message Channel, Message,
Pipes and Filters, Message Router, Message Translator, and Message Endpoint. In turn, each of these

Dirk-Jan
Highlight

root patterns leads to its own chapter in the book (except Pipes and Filters, which is not specific to
messaging but is the basis of the routing and transformation patterns).

The pattern language is divided into eight chapters, which follow the hierarchy described above:

• Chapter 1: Integration Styles – This chapter reviews the different approaches available for
integrating applications, including Messaging.

• Chapter 2: Messaging Systems – This chapter reviews the six root messaging patterns,
giving an overview of the entire pattern language.

• Chapter 3: Messaging Channels – Applications communicate via channels. Channels define
the logical pathways a message can follow. This chapter shows how to determine what
channels your applications need.

• Chapter 4: Message Construction – Once you have message channels, you need messages to
send on them. This chapter explains the different ways messages can be used and how to
take advantage of their special properties.

• Chapter 5: Message Routing – As a messaging topography becomes more complex, senders
know less and less about who should receive their messages. Rather, they send the
messages to intermediate applications that send them to others until the messages finally
find their way to their final destination. This chapter teaches you the responsibilities of
these routing applications.

• Chapter 6: Message Transformation – Independently developed applications often don’t
agree on messages’ formats, on the form and meaning of supposedly unique identifiers,
and even the character encoding to be used. Therefore, intermediate components are
needed to convert messages from the form one application produced to that which other
applications will consume. This chapter shows how to design these transformer
applications.

• Chapter 7: Messaging Endpoints – Many applications were not designed to participate in a
messaging solution. As a result, they must be explicitly connected to the messaging
system. This section describes a messaging layer in the applications that is responsible for
sending and receiving the messages, making your application an endpoint for messages.

• Chapter 8: System Management – Once we have a messaging system in place to integrate
our applications, how do we make sure that it’s running correctly and doing what we
want? This chapter explores how to test and monitor a running messaging system.

These eight chapters go together to teach you what you need to know about connecting
applications using messaging.

Getting Started

With any book that has a lot to teach, it’s hard to know where to start, both for the authors and
the readers. Reading all of the pages straight through assures covering the entire subject area, but
isn’t the quickest way to get to the issues that are of the most help. Starting with a pattern in the
middle of the language can be like starting to watch a movie that’s half over; you see what’s
happening but don’t understand what it means.

Luckily, the pattern language is formed around root patterns (as described earlier). These root
patterns collectively provide an overview of the pattern language, and individually provide
starting points for delving deep into the details of messaging. To get an overall survey of the
language without reviewing all of the patterns, start with reviewing the root patterns. To jump
into the middle of the language, jump in at a root pattern, a place where the language has
finished discussing one major topic and is now starting another.

Chapter 1: Integration Styles provides an overview of the four main application integration
techniques and settles on Messaging as being the best overall for many integration opportunities.
Read this chapter if you are unfamiliar with issues involved in application integration and the
pros and cons of the various approaches that are available. If you just want to know what’s so
great about messaging, go straight to that pattern. If you’re already convinced that messaging is
the way to go and want to get started with how to use messaging, you can skip the first chapter
completely.

Chapter 2: Messaging Systems contains all of this pattern language’s root patterns (except
Messaging, which is in the first chapter). For an overview of the pattern language, read (or at least
skim) all of the patterns in this chapter. To dive deep on a particular topic, read its root pattern,
then go to the patterns mentioned in its next section at the end of the pattern; those next patterns
will all be in a chapter named after the root pattern.

The root patterns in this language are:

• Messaging – This is the #1 root pattern for the entire book: What is messaging, what
problem does it solve, and how does it solve it?

• Message Channel – What is the structure in a messaging system that conveys messages
from the sender to the receiver? How do you know which ones your applications need?

• Message – How does information get communicated from a sender to a receiver?
• Pipes and Filters – How can intermediate steps be performed after a message is sent but

before it is received?
• Message Router – If the sender does not know ultimately where the message should go,

how can the messaging system get it there?
• Message Translator – If the sender and receiver do not agree on the message format, how

can they communicate?
• Message Endpoint – How do the applications that send and receive messages connect to

the messaging system?

After the first two chapters, different types of messaging developers may be most interested in
different chapters, based on the specifics of how each group uses messaging to perform
integration:

• System Administrators may be most interested in Chapter 3: Messaging Channels, the
guidelines for what channels to create, and Chapter 8: System Management, guidance on
how to maintain a running messaging system.

• Application Developers should look at Chapter 7: Messaging Endpoints to learn how integrate
an application with a messaging system, and Chapter 4: Message Construction to learn what
messages to send when.

• System Integrators will gain the most from Chapter 5: Message Routing—how to direct
messages to the proper receivers—and Chapter 6: Message Transformation—how to convert
messages from the sender’s format to the receiver’s.

Keep in mind that when reading a pattern, if you’re in a hurry, start by just reading the problem
and solution (the two sentences in bold). This will give you enough information to determine if
the pattern is of interest to you right now, and if you already know the pattern. If you do not
know the pattern and it sounds interesting, go ahead and read the other parts.

Also remember that this is a pattern language, so the patterns are not necessarily meant to be
read in the order they’re presented in the book. The book’s order teaches you about messaging by
considering all of the relevant topics in turn and discussing related issues together. To use the
patterns to solve a particular problem, start with an appropriate root pattern. Its context explains
what patterns need to be applied before this one, even if they’re not the ones immediately
preceding this one in the book. Likewise, the next section (the last paragraph of the pattern)
describes what patterns to consider applying after this one, even if they’re not the ones
immediately following this one in the book. Use the web of interconnected patterns, not the
linear list of book pages, to guide you through the material.

Supporting Web Site

Please look for companion information to this book plus related information on enterprise
integration at our Web site: www.enterpriseintegrationpatterns.com. You can also e-mail your
comments, suggestions and feedback to us at authors@enterpriseintegrationpatterns.com.

Summary

You should now have a good understanding of the following concepts which are fundamental to
the material in this book:

• What messaging is
• What a messaging system is
• Why to use messaging
• How asynchronous programming is different
• How application integration is different from application distribution
• What types of commercial products contain messaging systems

You should also have a feel for how this book is going to teach you how to use messaging:

• The role patterns have in structuring the material

• The meaning of the custom notation used in the diagrams
• The purpose and scope of the examples
• The organization of the material
• How to get started learning the material

Now that you understand the basic concepts and how the material will be presented, you are
now ready to start learning how to integrate applications using messaging.

1．Solving Integration Problems using Patterns

This chapter illustrates how the patterns in this book can be used to solve a variety of integration
problems. In order to do so, we examine common integration scenarios and present a
comprehensive integration example. As we design the solution to this example, we will express
the solution using the patterns contained in this book. At the end of this chapter you will be
familiar with about two dozen integration patterns.

The Need for Integration

Enterprises are typically comprised of hundreds if not thousands of applications that are
custom-built, acquired from a third-party, part of a legacy system, or a combination thereof,
operating in multiple tiers of different operating system platforms. It is not uncommon to find an
enterprise that has 30 different Websites, three instances of SAP and countless departmental
solutions.

We may be tempted to ask: How do businesses allow themselves to get into such a mess?
Shouldn’t any CIO of such an enterprise spaghetti architecture be fired? Well, like in most cases
things happen for a reason.

First of all, writing business applications is hard. Creating a single, big application to run a
complete business is next to impossible. The ERP vendors have had some success at creating
larger-than-ever business applications. The reality, though, is that even the heavyweights like
SAP, Oracle, Peoplesoft and the like only perform a fraction of the business functions required in
a typical enterprise. We can see this easily by the fact that ERP systems are one of the most
popular integration points in today’s enterprises.

Second, spreading business functions across multiple applications provides the business with the
flexibility to select the “best” accounting package, the “best” customer relationship management
or the order processing system that best suits the business’ needs. One-stop-shopping for
enterprise applications is usually not what IT organizations are interested in, nor is possible
given the number individual business requirements.

Vendors have learned to cater to this preference and offer focused applications around a specific
core function. However, the ever-present urge to add new functionality to existing software
packages has caused some functionality spillover amongst packaged business applications. For
example, many billing systems started to incorporate customer care and accounting functionality.
Likewise, the customer care software maker takes a stab at implementing simple billing functions
such as disputes or adjustments. Defining a clear functional separation between systems is hard:
is a customer disputing a bill considered a customer care or a billing function?

Users such as customers, business partners and internal users do generally not think about
system boundaries when they interact with a business. They execute business functions,
regardless of the how many internal systems the business function cuts across. For example, a
customer may call to change his or her address and see whether the last payment was received.
In many enterprises, this simple request can span across the customer care and billing systems.
Likewise, a customer placing a new order may require the coordination of many systems. The
business needs to validate the customer ID, verify the customer’s good standing, check inventory,
fulfill the order, get a shipping quote, compute sales tax, send a bill, etc. This process can easily
span across five or six different systems. From the customer’s perspective, it is a single business
transaction.

In order to support common business processes and data sharing across applications, these
applications need to be integrated. Application integration needs to provide efficient, reliable and
secure data exchange between multiple enterprise applications.

Integration Challenges

Unfortunately, enterprise integration is no easy task. By definition, enterprise integration has to
deal with multiple applications running on multiple platforms in different locations, making the
term ‘simple integration’ pretty much an oxymoron. Software vendors offer EAI suites that
provide cross-platform, cross-language integration as well as the ability to interface with many
popular packaged business applications. However, this technical infrastructure presents only a
small portion of the integration complexities. The true challenges of integration span far across
business and technical issues.

• Enterprise integration requires a significant shift in corporate politics. Business
applications generally focus on a specific functional area, such as Customer Relationship
Management (CRM), Billing, Finance, etc. This seems to be an extension of Conway's
famous law that postulates that "Organizations which design systems are constrained to
produce designs which are copies of the communication structures of these
organizations." As a result, many IT groups are organized in alignment with these
functional areas. Successful enterprise integration does not only need to establish
communication between multiple computer systems but also between business units and
IT departments -- in an integrated enterprise application groups no longer control a
specific application because each application is now part of an overall flow of integrated
applications and services.

• Because of their wide scope, integration efforts typically have far-reaching implications
on the business. Once the processing of the most critical business functions is
incorporated into an integration solution, the proper functioning of that solution becomes
vital to the business. A failing or misbehaving integration solution can cost a business
millions of Dollars in lost orders, misrouted payments and disgruntled customers.

• One important constraint of developing integration solutions is the limited amount of
control the integration developers typically have over the participating applications. In
most cases, the applications are “legacy” systems or packaged applications that cannot be

changed just to be connected to an integration solution. This often leaves the integration
developers in a situation where they have to make up for deficiencies or idiosyncrasies
inside the applications or differences between the applications. Often it would be easier to
implement part of the solution inside the application “endpoints”, but for political or
technical reasons that option may not be available.

• Despite the wide-spread need for integration solutions, only few standards have
established themselves in this domain. The advent of XML, XSL and Web services
certainly mark the most significant advance of standards-based features in an integration
solution. However, the hype around Web services has also given grounds to new
fragmentation of the marketplace, resulting in a flurry of new “extensions” and
“interpretations” of the standards. This should remind us that the lack of interoperability
between “standards-compliant” products was one of the major stumbling blocks for
CORBA, which offered a sophisticated technical solution for system integration.

• Also, existing XML Web Services standards address only a fraction of the integration
challenges. For example, the frequent claim that XML is the ‘Lingua franca” of system
integration is somewhat misleading. Standardizing all data exchange to XML can be
likened to writing all documents using a common alphabet, such as the Roman alphabet.
Even though the alphabet is common, it is still being used to represent many languages
and dialects, which cannot be readily understood by all readers. The same is true in
enterprise integration. The existence of a common presentation (e.g. XML) does not imply
common semantics. The notion of “account” can have many different semantics,
connotations, constraints and assumptions in each participating system. Resolving
semantic differences between systems proves to be a particularly difficult and
time-consuming task because it involves significant business and technical decisions.

• While developing an EAI solution is challenging in itself, operating and maintaining such
a solution can be even more daunting. The mix of technologies and the distributed nature
of EAI solutions make deployment, monitoring, and trouble-shooting complex tasks that
require a combination of skill sets. In many cases, these skill sets do not exist within IT
operations or are spread across many different individuals.

Anyone who has been through an EAI deployment can attest to the fact that EAI solutions are a
critical component of today’s enterprise strategies, but make IT life harder, not easier. It’s a long
way between the high-level vision of the integrated enterprise (defined by terms such as
“Straight-Through-Processing”, “T+1”, “Agile Enterprise”) and the nuts-and-bolts
implementations (what parameters did System.Messaging.XmlMessageFormatter take again?).

How Integration Patterns Can Help

There are no simple answers for enterprise integration. In our opinion, anyone who claims that
integration is easy must be either incredibly smart (or at least a good bit smarter than the rest of
us), incredibly ignorant (OK, let’s say optimistic), or they have a financial interest in making you
believe that integration is easy.

Even though integration is a broad and difficult topic, we can always observer some people who
are much better at it than others. What do these people know that others don’t? Since there is no
such thing as “Teach Yourself Integration in 21 Days” (this book sure ain't!) it is unlikely that
these people know all the answers to integration. However, these people have usually solved
enough integration problems that they can compare new problems to prior problems they have
solved. They know the “patterns” of problems and associated solutions. They learned these
patterns over time by trial-and-error or from other experienced integration architects.

The “patterns” are not copy-paste code samples or shrink-wrap components, but rather nuggets
of advice that describe solutions to frequently recurring problems. Used properly, the integration
patterns can help fill the wide gap between the high-level vision of integration and the actual
system implementation.

The Wide World of Integration

We intentionally left the definition of “integration” very broad. To us it means connecting
computer systems, companies or people. While this broad definition gives us the convenience of
sticking whatever we find interesting into this book, it is helpful to have a closer look at some of
the most common integration scenarios. Helping clients design and implement integration
solutions, we repeatedly came across the following six types of integration projects:

• Information Portals
• Data Replication
• Shared Business Functions
• Service-Oriented Architectures
• Distributed Business Processes
• Business-to-Business Integration

This list is by no means a complete taxonomy of all things integration but it does help to illustrate
the kind of solutions that integration architects build. Many integration projects consist of a
combination of multiple types of integration. For example, reference data replication is often
required in order to tie applications into a single distributed business process.

Information Portal

Many business users have to access more than one system to answer a specific question or to
perform a single business function. For example, to verify the status of an order, a customer
service representative may have to access the order management system on the mainframe plus
log on to the system that manages orders placed over the Web. Information portals aggregate
information from multiple sources into a single display to avoid having the user access multiple
systems for information. Simple information portals divide the screen into multiple zones, each
of which displays information from a different system. More sophisticated systems provide
limited interaction between zones, for example when a user selects an item from a list in zone A,
zone B refreshes with detailed information about the selected item. Other portals provide even
more sophisticated user interaction and blur the line between a portal and an integrated
application.

Data Replication

Many business systems require access to the same data. For example, a customer’s address may
be used in the customer care system (when the customer calls to change it), the accounting
system (to compute sales tax), the shipping system (to label the shipment) and the billing system
(to send an invoice). Many of these systems are going to have their own data stores to store
customer related information. When a customer calls to change his or her address all these
systems need to change their copy of the customer’s address. This can be accomplished by
implementing an integration strategy based on data replication.

There are many different ways to implement data replication. For example, some database
vendors build replication functions into the database, we can export data into files and re-import
them into the other system, or we can use message-oriented middleware to transport data
records inside messages.

Shared Business Function

In the same way that many business applications store redundant data, they also tend to
implement redundant functionality. Multiple systems may need to check whether a
social-security number is valid, whether the address matches the specified postal code or whether
a particular item is in stock. It makes business sense to expose these functions as a shared
business function that is implemented once and available as a service to other systems.

A shared business function can address some of the same needs as data replication. For example,
we could implement a business function called ‘Get Customer Address’ that could allow other
systems to request the customer’s address when it is needed rather than always storing a
redundant copy. The decision between these two approaches is driven by a number of criteria,
such as the amount of control we have over the systems (calling a shared function is usually more
intrusive than loading data into the database) or the rate of change (an address may be needed
frequently but change very infrequently).

Service-Oriented Architecture

Shared business functions are often referred to as services. A service is a well-defined function
that is universally available and responds to requests from “service consumers”. Once an
enterprise assembles a collection of useful services, managing the services becomes an important
function. First of all, applications need some form of service directory, a centralized list of all
available services. Second, each service needs to describe its interface in such a way that an
application can “negotiate” a communications contract with the service. These two functions,
service discovery and negotiation, are the key elements that make up a service-oriented
architecture.

Service-oriented architectures (SOAs) blur the line between integration and distributed
applications. A new application can be developed using existing, remote services that may be
provided by other applications. Therefore, calling a service may be considered integration
between the two applications. On the other hand a service-oriented architecture usually provides
tools that make calling an external service almost as simple as calling a local method
(performance considerations aside). Because all services are available in a consistent manner,
SOAs are sometimes referred to as “service bus architectures”.

Distributed Business Process

One of the key drivers of integration is the fact that a single business transaction is often spread
across many different systems. A previous example showed us that a simple business function
such as “place order” can easily touch six or seven systems. In most cases, all relevant functions
are incorporated inside existing applications. What is missing is the coordination between the
applications. Therefore, we can add a business process management component that manages the
execution of a business function across multiple existing systems.

The boundaries between a service-oriented architecture and a distributed business can blur. For
example, you could expose all relevant business functions as service and then encode the
business process inside an application that accesses all services via an SOA.

Business-to-Business Integration

So far we have mainly considered the interaction between applications and business functions
inside an enterprise. In many cases, business functions may be available from outside suppliers
or business partners. For example, the shipping company may provide a service for customers to
compute shipping cost or track shipments. Or a business may use an outside provider to
compute sales tax rates. Likewise, integration frequently occurs between business partners. A
customer may contact a retailer to inquire on the price and the availability of an item. In response,
the retailer may ask the supplier for the status of an expected shipment that contains the
out-of-stock item.

Many of the above considerations apply equally to business-to-business integration. However,
communicating across the Internet or some other network usually raises new issues related to
transport protocols and security. Also, since many business partners may collaborate in an
electronic “conversation” standardized data formats are critically important.

Loose Coupling

One of the biggest buzz words in enterprise architecture and integration is the notion of loose
coupling. It is in fact such a popular term that Doug Kaye wrote a whole book titled after this
ubiquitous concept [Kaye]. The benefits of loose coupling have been know for quite some time

now, but they have taken center stage more recently due to the surging popularity of Web
services architectures.

The core principle behind loose coupling is to reduce the assumptions two parties (components,
applications, services, programs, users) make about each other when they exchange information.
The more assumptions two parties make about each other and the common protocol, the more
efficient the communication can be, but the less tolerant the solution is of interruptions or
changes because the parties are tightly coupled to each other.

A great example of tight coupling is a local method invocation. Invoking a local method inside an
application is based on a lot of assumptions between the called and the calling routine. Both
methods have to run in the same process (e.g. a virtual machine) and be written in the same
language (or at least use a common intermediate language or byte code). The calling method has
to pass the exact number of expected parameters, each using the correct type. The call is
immediate, i.e. the called method starts processing immediately after the calling method makes
the call. Meanwhile, the calling method will only resume processing when the called method
completes (meaning the invocation is synchronous). Processing will automatically resume in the
calling method with the next statement after the method call. The communication between the
methods is immediate and instantaneous, so neither the caller nor the called method have to
worry about security in the form of eavesdropping 3rd parties. All these assumptions make it
very easy to write well structured applications that break functionality into individual methods
to be called by other methods. A large number of small method allow for flexibility and reuse.

Many integration approaches have aimed to make remote communications simple by packaging
a remote data exchange into the same semantics as a local method call. This strategy resulted in
the notion of a Remote Procedure Call (RPC) or Remote Method Invocation (RMI), supported by
many popular frameworks and platforms: CORBA (see[Zahavi]), Microsoft DCOM, .NET
Remoting, or Java RMI, and most recently, RPC-style Web services. The intended upside of this
approach is twofold. First, synchronous method-call semantics are very familiar to application
developers, so why not build on what we already know. Second, using the same syntax and
semantics for both local method calls and remote invocations would allow us to defer the
decision about what components should run locally and which ones run remotely until
deployment time, leaving the application developer with one less thing to worry about.

The challenge that all these approaches face lies in the fact that remote communication
invalidates many of the assumptions that a local method call is based on. As a result, abstracting
the remote communication into the simple semantics of a method call can be confusing and
misleading. Waldo et al. reminded us back in 1994 that "objects that interact in a distributed
system need to be dealt with in ways that are intrinsically different from objects that interact in a
single address space" [Waldo]. For example, if we call a remote service to perform a function for
us, do we really want to restrict ourselves to only those services that were built using the same
programming language as we do? A call across the network also tends to be multiple orders of
magnitude slower than a local call. Should the calling method really wait until the called method
completes? What if the network is interrupted and the called method is temporarily unreachable?
How long should we wait? How can we be sure we communicate with the intended party and

not a 3rd party “spoofer”? How can we protect against eavesdropping? What if the method
signature (the list of expected parameters) of the called method changes? If the remote method is
maintained by a third party or a business partner we no longer have control over such changes.
Should we have our method invocation fail or should we attempt to find the best possible
mapping between the parameters and still make the call? It becomes quickly apparent that
remote integration brings up a lot of issues that a local method call never had to deal with.

In summary, trying to portray remote communication as a variant of a local method invocation is
asking for trouble. Such architectures typically result in brittle, hard to maintain and poorly
scalable solutions. Many Web services pioneers recently (re-)discovered this fact the hard way.

1 Minute EAI

To show the effects of tightly coupled dependencies and how to resolve them, let’s look at
different options of connecting two systems. Let’s assume we are building an on-line banking
system that allows customers to deposit money into their account from another bank. To perform
this function, the front-end Web application has to be integrated with the back-end financial
system that manages fund transfers.

The easiest way to connect the two systems is through the TCP/IP protocol. Every self-respecting
operating system or programming library created in the last 15 years is certain to include a
TCP/IP stack. TCP/IP is the ubiquitous communications protocol that transports data between
the millions of computers connected to the Internet and local networks. Why not use the most
ubiquitous of all network protocols to communicate between two applications?

Let’s assume that the remote function that deposits money into a person’s account takes only the
person’s name and the Dollar amount as arguments. The following few lines of code then suffice
to call such a function over TCP/IP (we chose C#, but this code would look virtually identical in
C or Java).

String hostName = "www.eaipatterns.com";

int port = 80;

IPHostEntry hostInfo = Dns.GetHostByName(hostName);

IPAddress address = hostInfo.AddressList[0];

IPEndPoint endpoint = new IPEndPoint(address, port);

Socket socket = new Socket(address.AddressFamily, SocketType.Stream, ProtocolType.Tcp);

socket.Connect(endpoint);

byte[] amount = BitConverter.GetBytes(1000);

byte[] name = Encoding.ASCII.GetBytes("Joe");

int bytesSent = socket.Send(amount);

bytesSent += socket.Send(name);

socket.Close();

This code opens a socket connection to the address www.eaipatterns.com and sends two data
items (the amount and the customer’s name) across the network. No expensive middleware is
required, no EAI tools, RPC toolkits, just 10 lines of code. When we run this code it tells us: “7
bytes sent”. Voila! How can integration be so difficult?

There are a couple of major problems with this integration attempt. One of the strengths of the
TCP/IP protocol is its wide support so that we can connect to pretty much any computer
connected to the network regardless of the operating system or programming language it uses.
However, the platform independence works only for very simple messages: byte streams. In
order to convert our data into a byte stream we used the BitConverter class. This class converts
any data type into a byte array, using the internal memory representation of the data type. The
catch is that the internal representation of an integer number varies with computer systems. For
example, .NET uses a 32 bit integer while other systems may use a 64 bit representation. Our
example transfers 4 bytes across the network to represent a 32 bit integer number. A system using
64 bits would be inclined to read 8 bytes off the network and would end up interpreting the
whole message (including the customer name) as a single number.

Also, some computer systems store their numbers in big-endian format while others store them
in little-endian format. A big-endian format stores numbers starting with the highest byte first
while little-endian systems store the lowest byte first. PCs operate on a little-endian scheme so
that the code passes the following 4 bytes across the network:

232 3 0 0

232 + 3 * 2^8 equals 1000. A system that uses big-endian numbers would consider this message to
mean 232* 2^24 + 3 * 2^16 = 3,892,510,720. Joe will be a very rich man! So this approach works
only under the assumption that all connected computers represent numbers in the same internal
format.

The second problem with this simple approach is that we specify the location of the remote
machine (in our case www.eaipatterns.com). The Dynamic Naming Service (DNS) gives us one
level of indirection between the domain name and the IP address, but what if we want to move
the function to a different computer on a different domain? What if the machine fails and we
have to setup another machine? What if we want to send the information to more than one
machine? For each scenario we would have to change the code. If we use a lot of remote
functions this could become very tedious. So we should find a way to make our communication
independent from a specific machine on the network.

Our simple TCP/IP example also establishes temporal dependencies between the two machines.
TCP/IP is a connection-oriented protocol. Before any data can be transferred, a connection has to

be established first. Establishing a TCP connection involves IP packets traveling back and forth
between sender and receiver. This requires that both machines and the network are all available
at the same time. If any of the three pieces is malfunctioning or not available due to high load, the
data cannot be sent.

Lastly, the simple communication also relies on a very strict data format. We are sending 4 bytes
of amount data and then a sequence of characters that define the customer’s account. If we want
to insert a third parameter, e.g. the name of the currency, we would have to modify both sender
and receiver to use the new data format.

Tightly Coupled Interaction

In summary, our minimalist integration solution is fast and cheap, but it results in a very brittle
solution because the two participating parties make the following assumptions about each other:

• Platform Technology – internal representations of numbers and objects
• Location – hard-coded machine addresses
• Time – all components have to be available at the same time
• Data Format – the list of parameters and their types must match

As we stated in the beginning, coupling is a measure of how many assumptions parties make
about each other when they communicate. Our simple solution requires the parties to make a lot
of assumptions. Therefore, this solution is tightly coupled.

In order to make the solution more loosely coupled we can try to remove these dependencies one
by one. We should use a standard data format that is self-describing and platform independent,
such as XML. Instead of sending information directly to a specific machine we should send it to
an addressable “channel”. A channel is a logical address that both sender and receiver can agree
on the same channel without being aware of each other’s identity. Using channels resolves the
location-dependency, but still requires all components to be available at the same time if the
channel is implemented using a connection-oriented protocol.. In order to remove this temporal
dependency we can enhance the channel to queue up sent requests until the network and the
receiving system are ready. To support queuing of requests inside the channel, we need wrap
data into self-contained messages so that the channel knows how much data to buffer and deliver
at any one time. Lastly, the two systems still depend on a common data format. We can remove
this dependency by allowing for data format transformations inside the channel. If the format of
one system changes we only have to change the transformer and not the other participating
systems. This is particularly useful if many applications send data to the same channel.

Loosely Coupled Interaction

Mechanisms such as a common data format, queuing channels, and transformers help turn a
tightly coupled solution into a loosely coupled solution. The sender no longer has to depend on
the receiver's internal data format not its location. It does not even have to pay attention to
whether the other computer is ready to accept requests or not. Removing these dependencies
between the systems makes the overall solution more tolerant to change, the key benefit of loose
coupling. The main drawback of the loosely coupled approach is the additional complexity. This
is no longer a 10-lines-of-code solution! Therefore, we use a message-oriented middleware
infrastructure that provides these services for us. This infrastructure makes exchanging data in a
loosely coupled way almost as easy as the example we started with. The next section describes
the components that make up such a middleware solution.

Is loose coupling the panacea? Like everything else in enterprise architecture, there is no single
best answer. Loose coupling provides important benefits such as flexibility and scalability, but it
introduces a more complex programming model and can make designing, building and
debugging solutions more difficult.

A Loosely Coupled Integration Solution

In order to connect two systems via an integration solution, a number of things have to happen.
These things make up what we call middleware – the things that sit between applications.

Invariably, some data has to be transported from one application to the next. This data could be
an address record that needs to be replicated, a call to a remote service or a snippet of HTML
headed for a portal display. Regardless of the payload, this piece of data needs to be understood
by both ends and needs to be transported, usually across a network. Two elements provide this
basic function. We need a communications channel that can move information from one
application to the other. This channel could be a series of TCP/IP connections, a shared file, a
shared database or a floppy disk being carried from one computer to the next (the infamous
‘sneakernet’). Inside this channel we place a message – a snippet of data that has an agreed-upon
meaning to both applications that are to be integrated. This piece of data can be very small, such
as the phone number of a single customer that has changed, or very large, such as the complete
list of all customers and their associated addresses. We call this piece of data a message.

Basic Elements of an Integration Solution

Now that we can send messages across channels we can establish a very basic form of integration.
However, we promised that simple integration is an oxymoron, so let’s see what is missing. We
mentioned before that integration solutions often have limited control over the applications they
are integrating, such as the internal data formats used by the applications. For example, one data
format may store the customer name in two fields, called FIRST_NAME and LAST_NAME, while
the other system may use a single field called Customer_Name. Likewise, one system may
support multiple customer addresses while the other system only supports a single address.
Because the internal data format of an application can often not be changed the middleware
needs to provide some mechanism to convert one application’s data format in the other’s. We call
this step translation.

So far we can send data from one system to another and accommodate differences in data
formats. What happens if we integrate more than two systems? Where does the data have to be
moved? We could expect each application to specify the target system(s) for the data it is sending
over the channel. For example, if the customer address changes in the customer care system we
could make that system responsible for sending the data to all other systems that store copies of
the customer address. As the number of systems increases this becomes very tedious and
requires the sending system to have knowledge about all other systems. Every time a new system
is added, the customer care system would have to be adjusted to the new environment. Things
would be a lot easier of the middleware could take care of sending messages to the correct places.
This is the role of a routing component such as a message broker.

Integration solutions can quickly become complex because they deal with multiple applications,
data formats, channels, routing and transformation. All these elements may be spread across
multiple operating platforms and geographic locations. In order to have any idea what is going
on inside the system we need a systems management function. This subsystem monitors the flow of
data, makes sure that all applications and components are available and reports error conditions
to a central location.

Our integration solution is now almost complete. We can move data from one system from
another, accommodate differences in the data format, route the data to the required systems and
monitor the performance of the solution. So far we assumed that an application sends data as a

message to the channel. However, most packaged and legacy applications and many custom
applications are not prepared to participate in an integration solution. We need a message
endpoint to connect the system explicitly to the integration solution. The endpoint can be a special
piece of code or a Channel Adapter provided by an integration software vendor.

Widget-Gadget Corp -- An Example

The best way to understand message-based integration solutions is by walking through a
concrete example. Let’s consider Widgets & Gadgets ‘R Us (WGRUS), an on-line retailer that
buys widgets and gadgets from manufacturers and resells them to customers.

WGRUS Ecosystem

For this example, we assume that the solution needs to support the following requirements.
Naturally, we simplified the requirements a bit for sake of brevity, but nevertheless these types of
requirements occur frequently in real businesses.

• Take Orders: Customers can place orders via Web, phone or fax
• Process Orders: Processing an order involves multiple steps, including verifying

inventory, shipping the goods and invoicing the customer
• Check Status: Customers can check the order status
• Change Address: Customers can use a Web front-end to change their billing and

shipping address
• New Catalog: The suppliers update their catalog periodically. WGRUS needs to update

its pricing and availability based in the new catalogs.
• Announcements: Customers can subscribe to selective announcements from WGRUS.
• Testing and Monitoring: The operations staff needs to be able to monitor all individual

components and the message flow between them.

We will tackle each of these requirements separately and describe the solution alternatives and
trade-offs using the pattern language introduced in this book.

Internal Systems

Like in most integration scenarios, WGRUS is not a so-called “green field” implementation, but
rather the integration of an existing IT infrastructure comprised of a variety of packaged and
custom applications. The fact that we have to work with existing applications often makes
integration work challenging. In our example WGRUS runs the following systems (see picture).

WGRUS IT Infrastructure

WGRUS has four different channels to interact with customers. Customers can visit the company
Web site, call the customer service representative at the call center or submit orders via fax.
Customers can also receive notifications via e-mail.

WGRUS’ internal systems are comprised of the accounting system, which also includes billing
functions, the shipping system that computes shipping charges and interacts with the shipping
companies. For historic reasons, WGRUS has two inventory and catalog systems. WGRUS used
to sell only widgets but acquired another retailer that sells gadgets. WGRUS decided it will be
less expensive to operate parallel systems than trying to rewrite both systems into a single
system.

Taking Orders

The first function we want to implement is taking orders. Taking orders is a good thing because
they bring revenue. However, placing orders is currently a tedious manual process so that the
cost incurred with each order is high. In fact, on orders below $20 WGRUS hardly makes any
money because any potential profit is eaten up by labor cost processing the order.

The first step to streamlining order processing is to unify taking orders. A customer can place
orders over one of three channels: Web site, call center or fax. Unfortunately, each system is
based on a different technology and stores incoming orders in a different data format. The call
center system is a packaged application while the Web site is a custom J2EE application. The
inbound fax system requires manual data entry into a small Microsoft Access application. We
want to treat all orders equally, regardless of their source. For example, a customer should be
able to place an order via the call center and check the order status on the Web site.

Because placing an order is an asynchronous process that connects many systems, we decide to
implement a message-oriented middleware solution to streamline the order entry process.

Because the packaged call center application was not developed with integration in mind, we
connect it to the messaging system using a Channel Adapter. A Channel Adapter is a component
that can attach to an application and publish messages to a Message Channel whenever an event
occurs inside the application. With some Channel Adapters, the application may not even be aware
of the presence of the adapter. For example, a database adapter may add triggers to specific
tables so that every time the application inserts a row of data a message is sent to the Message
Channel. Channel Adapters can also work in the opposite direction, consuming messages off a
Message Channel and triggering an action inside the application in response.

We use the same approach for the inbound fax application, connecting the Channel Adapter to the
application database. Because the Web application is custom-built we implement the Endpoint
code inside the application. We use a Messaging Gateway to isolate the application code from the
messaging-specific code.

Taking Orders From Three Difrerent Channels

Because each system uses a different data format for the incoming orders we use three Message
Translators to convert the different data formats into a common New Order message that follows
a Canonical Data Model. A Canonical Data Model defines message formats that are independent
from any specific application so that all applications can communicate with each other in this
common format. If the internal format of an application changes, only the Message Translator
between the affected application and the coming Message Channel has to change while all other
applications and Message Translators remain unaffected. Using a Canonical Data Model means that
we deal with two types of messages: canonical (public) messages and application-specific
(private) messages. Application-specific messages should not be consumed by any other
component except the related application and the associated Message Translator. To reinforce this
policy we name application-specific Message Channels starting with the name of the application,
e.g. WEB_NEW_ORDER. Channels carrying canonical messages are named after the intent of the
message without any prefix, e.g. NEW_ORDER.

We connect each Channel Adapter to the Message Translator via a Point-to-Point Channel because we
want to be sure that each order message is consumed only once. We could get away without
using a Message Translator for the Web Interface if we programmed the transformation logic into
the Gateway. However, hand-coding transformation functions can be tedious and error prone
and we prefer to use a consistent approach. The additional Message Translator also allows us to
shield the New Order flow from minor changes in the Web Interface data format. All Message
Translators publish to the same NEW_ORDER Point-to-Point Channel so that orders can be processed
off this channel without regard to the order’s origin.

The NEW_ORDER Message Channel is a so-called Datatype Channel because it carries messages of
only one type, i.e. new orders. This makes it easy for message consumers to know what type of
message to expect. The New Order message itself is designed as a Document Message. The intent
of the message is not to instruct the receiver to take a specific action, but rather to pass a
document to any interested recipient who is free to decide how to process document.

Processing Orders

Now that we have a consistent order message that is independent from the message source we
need to process orders. In order to fulfill an order we need to complete the following steps:

• Verify the customer’s credit standing. If the customer has outstanding bills, we want to reject the new order.

• Verify inventory. We can’t fulfill orders for items that are not in stock.

• If the customer is in good standing and we have inventory we want to shop the goods and bill the customer.

We can express this sequence of events using a UML activity diagram. Activity diagrams have
relatively simple semantics and are a good tool to depict processes that include parallel activities.
Subsequent activities are connected by simple arrows. Parallel activities are connected by a thick
black bar representing fork and join actions. A fork action causes all connected activities to start
simultaneously while the join action only continues after all incoming activities have been
completed.

The activity diagram executes the “Check Inventory” task and the “Verify Customer Standing”
task in parallel. The join bar waits until both activities are completed before it allows the next
activity to start. The next activity verifies the results of both steps – do we have inventory and is
the customer in good standing? If both conditions are fulfilled, the process goes on to fulfill the
order. Otherwise, we transition to an exception handling activity. For example, we may call the
customer to remind them to pay the last invoice or send an e-mail letting him or her know that
the order will be delayed. Because this book focuses on the design aspects of message-oriented
integration rather than workflow modeling, we leave the details of the exception handling
process aside for now. For a very good discussion of workflow architecture and workflow
modeling we refer you to [Leyman] and [Sharp].

Activity Diagram for Order Processing

It turns out that the activities map relatively nicely to the systems in WGRUS’ IT department. The
Accounting system verifies the customer’s credit standing, the inventory systems check the
inventory and the shipping system initiates the physical shipping of goods. The accounting
system also acts as the billing system and sends invoices. The order processing function is a
typical implementation of a distributed business process.

To convert the logical activity diagram into an integration design, we use a Publish-Subscribe
Channel to implement the fork action and an Aggregator to implement the join action. A
Publish-Subscribe Channel sends a message to all active consumers while an Aggregator receives
multiple incoming messages and combines them into a single outgoing message (see picture):

Order Processing Implementation using Asynchronous Messaging

The Aggregator combines the results from both messages and passes the resulting message to a
Content-Based Router. A Content-Based-Router is a component that consumes a message and
publishes it unmodified to a choice of other channels based on rules coded inside the router. The
Content-Based-Router is equivalent to the branch in a UML activity diagram. In this case, if both
the inventory check and the credit check have been affirmative, the Content-Based Router forwards

the message to the VALIDATED_ORDER channel. If the customer is not in good standing or we have
no inventory on hand, it forwards the message to the INVALID_ORDER process. The exception
process (not shown in the picture) listens to messages on this channel and notifies the customer
of the rejected order.

As we learned in the requirements section, WGRUS has two inventory systems, one for widgets
and one for gadgets. As a result, we have to route the request for inventory to the correct system.
Because we want to hide the peculiarities of the inventory systems from the other systems, we
insert a Content-Based Router that routes the message to the correct system based on the type of
item ordered (see picture). For example, all incoming messages with an item number starting
with ‘W’ are routed to the widget inventory system and all orders with an item number starting
with ‘G’ are routed to the gadget inventory system.

Routing the Inventory Request

Note that the intent of messages on the Point-to-Point Channels between the Content-Based Router
and the inventory systems is different from the previous channel. These channels contain
Command Messages, messages that instruct the system to execute the specified command, in this
case verifying the inventory of an item.

Because the widget inventory system and the gadget inventory system use different internal data
formats we again insert Message Translators to convert from the canonical New Order message
format into a system-specific format. Using Message Translators with each originating system
(Web Interface, call center, inbound fax) and each target system (widget inventory and gadget
inventory) allows us to decouple changes between the systems. For example, if we added another
way of placing orders (e.g. ordering by e-mail), none of the other systems would be affected. The
price we pay for this flexibility is the fact that we translate each message twice, once at the source
and once at the destination.

What happens if the order item starts neither with ‘W’ nor with ‘G”? The Content-Based Router
routes the message to the INVALID_ORDER channel so that the invalid order can be processed
accordingly, e.g. by notifying the customer. This channel is a typical example of an Invalid
Message Channel. This is example highlights the fact that the meaning of a message changes
depending what channel it is on. Both the NEW_ORDER channel and the INVALID_ORDER channel
transport the same type of message, but in one case a new order is being processed while in the
other case the order is deemed invalid.

So far, we have assumed that each order can only contain a single item. This would be pretty
inconvenient for our customers because they would have to place a new order for each item. Also,
we would end up shipping multiple orders to the same customer and incur unnecessary shipping
costs. However, if we allow multiple items inside an order, which inventory system should verify
the inventory for this order? We could use a Publish-Subscribe Channel to send the order to each
inventory system to pick out the items that it can process. But what would then happen to invalid
items? How would we notice that neither inventory system processed the item? We want to
maintain the central control the Content-Based Router gives us, but we need to be able to route
each order item individually.

Therefore, we insert a Splitter, a component that breaks a single message into multiple individual
messages. In our case, the Splitter splits a single Order message into multiple Order Item message.
Each Order Item message can then be routed to the correct inventory system using a
Content-Based Router (see below).

Processing Order Items Individually

Naturally, when the inventory for all items has been verified, we need to recombine the messages
into a single message. We already learned that the component that can combine multiple
messages into a single message is the Aggregator. Using both a Splitter and an Aggregator, we can
logically separate the message flow for order items from that for orders.

When designing an Aggregator, we have to make three key decisions:

• Which messages belong together (“correlation”)?
• How do we determine that all messages are received (the “completeness condition”)?
• How do we combine the individual messages into one result message (the “aggregation

algorithm”)?

We can’t correlate order items by the customer ID because a customer may place multiple orders
in short succession. Therefore, we need a unique order ID for each order. We accomplish this by

inserting a Content Enricherinto the Taking Orders solution (see picture). A Content Enricheris a
component that adds missing data items to an incoming message.

Taking Orders With Enricher

Now that we have an order ID to correlate order item messages, we need to define the
completeness condition and the aggregation algorithm. Because we route all messages including
invalid items to the Aggregator, the Aggregator can simply use the number of items in the order
(one of the fields in the order message) to count until all order items arrive. The aggregation
algorithm is similarly simple. The Aggregator concatenates all item messages back into a single
order message and publishes it to the VALIDATED_ORDER channel.

The combination of a Splitter, a Router and an Aggregator is fairly common. We refer to it as a
Composed Message Processor. To simplify the picture, we insert the symbol for a Composed Message
Processor into the original message flow diagram:

Revised Order Process Implementation

Checking Status

Despite connecting the systems via messaging channels, fulfilling an order can take some amount
of time. For example, we may be out of a certain item and the inventory system may be holding
the inventory check message until new items arrive. This is one of the advantages of
asynchronous messaging: the communication is designed to happen at the pace of the
components. While the inventory system is “holding” the message, the accounting system can
still verify the customer’s credit standing. Once both steps are completed, the Aggregator
publishes the Validated Order message to initiate shipment and invoicing.

A long-running business process also means that both customers and managers are likely to want
to know the status of a specific order. For example, if certain items are out of inventory, the
customer may decide to process just those items that are in stock. Or if the customer has not
received the goods it is useful if we can tell him or her that the goods are on their way (including
the shipping company’s tracking number) or that there is an internal delay in the warehouse.

Tracking the status of an order with the current design is not so easy. Related messages flow
through multiple systems. In order to ascertain the status of the order in the sequence of steps we
would have to know the “last” message related to this order. One of the advantages of a
Publish-Subscribe Channel is that we can add additional subscribers without disturbing the flow of
messages. We can use this property to listen in to new and validated orders and store them into a
Message Store. We could then query the Message Store database for the status (see picture):

Adding a Message Store To Track Order Status

In situations where we use a Point-Point-Channel, we cannot simply add a subscriber to the
channel because in a Point-to-Point Channel, each message can only be consumer by a single
subscriber. However, we can insert a Wire Tap, a simple component that consumes a message off
one channel and publishes it to two channels. We can then use the second channel to send
messages to the Message Store (see picture).

Tracking Messages with a Wire Tap

Storing message data in a central database has another significant advantage. In the original
design each message had to carry all relevant data in order to continue processing the message
down the line. For example, the ‘Verify Customer Standing’ may have to pass through all sorts of
customer data even though it may only require the customer ID. This additional data is necessary
so that the resulting message still contains all data from the original order message. Storing the
New Order message in a Message Store has the advantage that all subsequent components can
refer to the Message Store for important message data without all intermediate steps having to
carry the data along (we will later to this function as Claim Check - messages can “check” data for
later retrieval).

Now the Message Store is responsible for maintaining data related to the new message as well as
the progress of the message within the process. This data gives us enough information to use the
Message Store to determine the next required steps in the process rather than connecting
components with fixed Message Channels. For example, if the database contains reply messages
from both the inventory systems and the billing system, we can conclude that the order has been
validated and send a message to the Shipping and billing system. Instead of making this decision
in a separate Aggregator component, we can do it right in the Message Store. Effectively, we are
turning the Message Store into a Process Manager.

A Process Manager is a central component that manages the flow of messages through the system.
The Process Manager provides two main functions:

• Storing data between messages
• Keeping track of progress and determining the next step

Processing Orders With a Process Manager

This architecture turns the individual systems (e.g. the inventory systems) into Shared Services
that can be accessed by any process. This increases reuse and allows for rapid changes and
maintenance. The services themselves can still be composed out of multiple steps, wired together
via a message flow (for example, using a Composed Message Processor to check inventory status for
each order item), or orchestrated via a Process Manager.

The Process Manager itself uses a persistent store (typically files or a relational database) to store
data associated with each process instance. In order to allow the Web Interface to query the status
of an order we could send a message to the Process Manager or the order DB. However, checking
status is a synchronous process – the customer expects the response right away. Because the Web
Interface is a custom application, we decide to access the Order Database directly to query the
order status. This form of Shared Database is the simplest and most efficient approach and we are
always ensured that the Web Interface displays the most current status. The potential downside
of this approach is the fact that the Web Interface is tightly coupled to the database, a trade-off
that we are willing to take.

The new architecture exposes all services to a common services bus so that they can be invoked
from any other component. If we add facilities to lookup (“discover”) a service from a service
registry, we can turn the WGRUS IT infrastructure into a Service-Oriented Architecture. In order
to participate in a Service-Oriented Architecture, each service has to provide additional functions.
For example, each service has to expose an interface contract that describes the functions
provided by the service. Each request-reply service also needs to support the concept of a Return
Address. A Return Address allows the caller (the “service consumer”) to specify the channel where
the service should send the reply message. This is important to allow the service to be reused in
different contexts, each of which may require its own channel for reply messages.

One difficulty in enabling these service functions is that many legacy systems were not build
with features such as Return Address in mind. Therefore, we “wrap” access to the legacy system
with a Smart Proxy. This Smart Proxy enhances the basic system service with additional capability

so that it can participate in a Service-Oriented Architecture. To do this, the Smart Proxy intercepts
both request and reply messages to and from the basic service (see picture).

Inserting a Smart Proxy to Turn a Legacy System Into a Shared Service

The Smart Proxy can store information from the request message (e.g. the Return Address specified
by the requestor) and use this information to process the reply message, (e.g. route it to the
correct reply channel). A Smart Proxy is also very useful to track quality of service (e.g. response
times) of an external service.

Change Address

WGRUS needs to deal with a number of addresses. For example, the invoice has to be sent to the
customer’s billing address while the goods are shipped to the shipping address. We want to
allow the customer to maintain all these addresses through the Web Interface to eliminate
unnecessary manual steps.

We can choose between two basic approaches to get the correct billing and shipping addresses to
the billing and shipping systems:

• Include address data with the New Order message
• Replicate address data to other systems

The first option has the advantage that we can use an existing integration channel to transport the
additional information. A potential downside is the additional data flowing across the
middleware infrastructure. We pass the address data along with every order even though the
address may change much less frequently.

Because the billing and shipping systems are packaged applications they were not designed with
integration in mind. As such, they are unlikely to be able to accept addresses with a new order
but rather use the address that is stored in their local database. In order to enable the systems to
update the address with the New Order message we need to execute two functions in the billing
system (and the shipping system): first, we need to update the address, and then we need to send
the bill (or ship the goods). Because the order of the two messages matters we insert a simple
Process Manager component that receives a New Order message (which includes the current

shipping and billing address0 and publishes two separate messages to the billing (or shipping)
system (see diagram).

Including Address Data in the New Order Message

We update the address directly into the system database using a database Channel Adapter.
Sending the goods or producing an invoice has to invoke the applications’ business logic.
Therefore, we connect to the applications’ business tiers and invoke the correct API function
when a message is received.

We need to keep in mind that the Channel Adapters require messages to be formatted in the
proprietary formats used by the applications (using so-called private messages). Because the New
Order message arrives in the canonical message format we need to perform a translation between
the two formats. We could build the transformation into the Process Manager but we actually
prefer external Message Translators so that the logic inside the Process Manager is not affected by
the possibly complicated data format required by the applications.

The second option uses data replication to propagate address changes to all affected systems
independently of the New Order process. Whenever the address information changes in the Web
interface we propagate the changes to all interested systems using a Publish-Subscribe Channel.
The systems store the updated address internally and use it when an order message arrives. This
approach reduces message traffic (assuming customers change addresses less frequently than
they place orders). It can also reduce coupling between systems. Any system that uses an address
can subscribe to the ADDRESS_CHANGE channel without affecting any other systems. The potential
downside is that we have to build another interface function for the billing and shipping systems
to enable them to consume address change messages.

Because we are dealing with multiple types of addresses (shipping and billing addresses) we
need to make sure that only the right type of address is stored in each system. We need to avoid
sending an address change message to the shipping system if the address is a billing address. We
accomplish this by using Message Filters that only pass messages matching certain criteria (see
diagram).

We also use Message Translators to translate the generic Address Change message into the specific
message format used by the applications. In this case we do not use a Message Translator for the
Web Interface because we define the Canonical Data Model as equal to the format of the Web
Interface application. This could limit out flexibility if we want to introduce other ways of
changing addresses in the future, but for now it is sufficient.

Propagating Address Changes via a Separate Publish-Subscribe Channel

Both the shipping and the billing system store addresses in a relational database so that we use a
database Channel Adapter to update the data in each system.

How do we decide between the two options? In our situation the message traffic is not much of a
concern because we only process a few hundred orders a day, so either solution would work well.
The main decision driver is going to be the internal structure of the applications. We may not be
able to insert the addresses directly into the database, but rather through the applications’
business layer. In this case the applications may perform additional validation steps and record
the address change activity. The system may even be programmed to e-mail a confirmation
message to the customer every time the address changes. This would get very annoying if the
update the address with every order. Such a condition would favor propagating address changes
using dedicated messages that are sent only when the customer actually changes the address.

In general we prefer well-defined, self-contained business actions such as “Change Address” and
“Place Order” because they give us more flexibility in orchestrating the businesses processes. It
all comes down to a question of granularity and the associated trade-offs. Fine-grained interfaces
can lead to sluggish systems due to an excessive number of remote calls being made or messages
being sent. For example, imagine an interface that exposes a separate method to change each
address field. This approach would be efficient if the communication happens inside a single
application – you only update those fields that changed. In an integration scenario sending six or
seven messages to update an address would be a significant overhead plus we would have to
deal with synchronizing the individual messages. Fine-grained interfaces also lead to tight
coupling. If we change the address format, we have to define new message formats and change
all other applications to send an additional message.

Coarse grained interfaces solve these issues. We send fewer messages and are therefore more
efficient and less tightly coupled. However, interfaces that are too coarse can limit our flexibility.

If Send Invoice and Change Address are combined into one external function, will we never need
to change an address without sending a bill? So as always the best answer is the happy medium
and depends on the specific trade-offs at work in the real-life scenario.

New Catalog

In order for customers to place orders they need to see the currently offered items and their
prices on-line. WGRUS’ catalog is driven by the offerings from the respective suppliers. However,
one of the services that WGRUS provides to its customers is allowing them to view widgets and
gadgets on the same site and to order both types of items in a single order. This function is an
example of an Information Portal scenario – we combine information from multiple sources into
a single view.

It turns out that both suppliers update their product catalog once every 3 months. Therefore, it
makes relatively little sense to create a real-time messaging infrastructure to propagate catalog
changes from the suppliers to WGRUS. Instead, we use File Transfer integration to move catalog
data from suppliers to WGRUS. The other advantage of using files is that they are easily and
efficiently transported across public networks using FTP or similar protocols. In comparison,
most asynchronous messaging infrastructures do not work well over the public Internet.

We still can use Translators and Adapters to transform the data to our internal catalog format.
However, these Translators process a whole catalog at once instead of one item at a time. This
approach is much more efficient if we are dealing with large amounts of data in the same format.

Updating Catalog Data via File Transfer

Announcements

In order to improve business, we want to announce specials to our customers every once in a
while. In order to not annoy the customers, we allow the customer to only receive messages that
are of interest to them. We also want to target specific messages to a specific subset of customers.
For example, we may announce special deals only to preferred customers. When we need to send
information to multiple recipients, a Publish-Subscribe Channel immediately comes to mind.
However, a Publish-Subscribe Channel has some disadvantages. First, it allows any subscriber to
listen to the published messages without the publisher’s knowledge. For example, we would not
want smaller customers to receive special offers intended for high-volume customers. The second

downside of Publish-Subscribe Channels is that they work efficiently only on local networks. If we
send data across wide-area networks the Publish-Subscribe Channel we have to send a separate
copy of the message to each recipient. If a recipient is not interested in the message we would
have incurred unnecessary network traffic.

Therefore, we should look for a solution that allows subscribers to issue their subscription
preferences and then send individual messages only to interested (and authorized) customers. In
order to perform this function we use a Dynamic Recipient List. A Dynamic Recipient List is the
combination of two Message Routing patterns. A Recipient List is a router that propagates a single
message to a set of recipients. The main difference between the Recipient List and a
Publish-Subscribe Channel is that the Recipient List addresses each recipient specifically and
therefore has tight control over who receives messages. A Dynamic Router is a router whose
routing algorithm can change based on control messages. These control messages can take the
form of subscription preferences issued by the subscribers. Combining these two patterns results
in a Dynamic Recipient List.

Sending Announcements With a Dynamic Recipient List

If customers receive announcements via e-mail, the implementation of these patterns can use the
mailing lists features typically supplied by e-mail systems. Each recipient channel is then
identified by an e-mail address. Likewise, if customers prefer to receive announcements via a
Web services interface, each recipient channel is implemented by a SOAP request and the
channel address is the URI of the Web service. This example illustrates that the patterns we use to
describe the solution design are independent of a specific transport technology.

Testing and Monitoring

Monitoring the correct execution of messages is a critical operations and support function. The
Message Store can provide us with some important business metrics such as the average time to
fulfill an order. However, we may need for more detailed information for the successful
operation of an integration solution. Let’s assume we enhance our solution to access an external
credit agency to better assess our customer’s credit standing. Even if we show no outstanding
payments we may want to decline a customer’s order if the customer’s credit ranking is
particularly poor. This is especially useful for new customers. Because the service is provided by

an outside provider we are being charged for its use. To verify the provider’s invoice we want to
track our actual usage and reconcile the two reports. We cannot simply go by the number of
orders because the business logic may not request an external credit check for long-standing
customers. Also, we have a Quality of Service (QoS) with the external provider. If the response
time exceeds a specified time, we do not have to pay for the request.

To make sure we are being billed correctly we want to track the number of requests we made and
the time it takes for the associated response to arrive. We have to be able to deal with two specific
situations. The external service can process more than one request at a time, so we need to be able
to match up request and reply messages. Second, since we treat the external service as a shared
service inside our enterprise we want to allow the service consumer to specify a Return Address,
the channel where the service should send the reply message. It could be difficult to match
request and reply messages if we don’t know which channel the reply message is on.

Once again the Smart Proxy is the answer. We insert the Smart Proxy between any service
consumer and the external service. We replace the Return Address specified by the service
consumer with a fixed reply channel. We store the original Return Address inside the Smart Proxy
so that it can forward the reply message to the channel specified by the consumer. The Smart
Proxy also measures the time elapsed between request and reply message from the external
service. The Smart Proxy publishes this data to the Control Bus. The Control Bus is connected to a
management console that collects metrics from many different components.

Inserting a Smart Proxy to Track Response Times

We also want to make sure that the external credit service is working correctly. The Smart Proxy
can report cases where no reply message is received within a specified time-out period to the
management console. Much harder to detect are cases where the external service returns a reply
message but the results in the message are incorrect. For example is the external service
malfunctions and returns a credit score of zero for every customer we would end up denying
every order. There are two mechanisms that can help us protect against such a scenario. First, we
can periodically inject a Test Message into the request stream. This Test Message requests the score
for a specific person so that the result is known. We can then use a Test Data Verifier to not only

check the fact that a reply was received but also the accuracy of the message content. Because the
Smart Proxy supports Reply Addresses the Test Data Generator can specify a special reply channel
to separate test replies from regular replies (see picture).

Inserting Test Messages to Verify Accurate Results

Another effective strategy to detect malfunctioning services that return messages in a valid
format but with bad data is to take a statistical sample. For example, we may expect to decline an
average of less than one in 10 orders due to the customer’s poor standing. If we decline more
than 5 orders in a row this may be an indication that an external service or some business logic is
malfunctioning. The management console could e-mail the five orders to an administrator who
can then take a quick look at the data to verify whether the rejections were justified.

Summary

We have walked through a fairly extensive integration scenario using different integration
strategies such as File Transfer, Shared Database and asynchronous Messaging. We routed, split and
aggregated messages. We also added functions to monitor the correct operation of the solution.
While the requirements for this example were admittedly simplified the issues and design
trade-offs we had to consider are very real. The solution diagrams and descriptions highlight
how we can describe a solution in a vendor-and technology-neutral language that is much more
accurate than a high-level sequence diagram.

The integration scenario in this chapter focused primarly on how to connect existing applications.
For a detailed description on how to publish and consume messages from inside a custom
application see the examples in Chapter 6 and Chapter 9 (see Introduction to Simple Messaging
Examples and Introduction to Composed Messaging Examples)

The remainder of the book contains detailed descriptions and code examples for each of the
patterns that we used in our solution design. The patterns are categorized by their primary intent

between base patterns, channel patterns, message patterns, routing patterns, transformation
patterns, endpoint patterns and system management patterns. This arrangement makes it easy to
read all patterns in sequence or look up individual patterns as a reference.

2．Integration Styles

Introduction

Enterprise integration is the task of making separate applications work together to produce a
unified set of functionality. Some applications may be custom developed in-house while others
are bought from third-party vendors. The applications probably run on multiple computers,
which may represent multiple platforms, and may be geographically dispersed. Some of the
applications may be run outside of the enterprise by business partners or customers. Some
applications may need to be integrated even though they were not designed for integration and
cannot be changed. These issues and others like them are what make application integration
difficult. This chapter will explore the options available for application integration.

Application Integration Criteria

What makes for good application integration? If integration needs were always the same, there
would only be one integration style. Yet like any complex technological effort, application
integration involves a range of considerations and consequences that should be taken into
account for any integration opportunity.

The first criterion is application integration itself. If you can develop a single, stand-alone
application that doesn’t need to collaborate with any other applications, you can avoid the whole
integration issue entirely. Realistically, though, even a simple enterprise has multiple
applications, applications that need to work together to provide a unified experience for the
enterprise’s employees, partners, and customers.

The other main decision criteria are:

Application coupling — Even integrated applications should minimize their dependencies on
each other so that each can evolve without causing problems for the others. Tightly coupled
applications make numerous assumptions about how the other applications work; when the
applications change and break those assumptions, the integration breaks. The interface for
integrating applications should be specific enough to implement useful functionality, but general
enough to allow that implementation to change as needed.

Integration simplicity — When integrating an application into an enterprise, developers should
strive to minimize changing the application and minimize the amount of integration code needed.
Yet changes and new code will usually be necessary to provide good integration functionality,
and the approaches with the least impact on the application may not provide the best integration
into the enterprise.

Integration technology — Different integration techniques require varying amounts of
specialized software and hardware. These special tools can be expensive, can lead to vendor
lock-in, and increase the burden on developers to understand how to use the tools to integrate
applications.

Data format — Integrated applications must agree on the format of the data they exchange, or
must have an intermediate traslator to unify applications that insist on different data formats. A
related issue is data format evolution and extensibility—how the format can change over time
and how that will affect the applications.

Data timeliness — Integration should minimize the length of time between when one application
decides to share some data and other applications have that data. Data should be exchanged
frequently in small chunks, rather than waiting to exchange a large set of unrelated items.
Applications should be informed as soon as shared data is ready for consumption. Latency in
data sharing has to be factored into the integration design; the longer sharing can take, the more
opportunity for shared data to become stale, and the more complex integration becomes.

Data or functionality — Integrated applications may not want to simply share data, they may
wish to share functionality such that each application can invoke the functionality in the others.
Invoking functionality remotely can be difficult to achieve, and even though it may seem the
same as invoking local functionality, it works quite differently, with significant consequences for
how well the integration works.

Asynchronicity — Computer processing is typically synchronous, such that a procedure waits
while its subprocedure executes. It’s a given that the subprocedure is available when the
procedure wants to invoke it. However, a procedure may not want to wait for the subprocedure
to execute; it may want to invoke the subprocedure asynchronously, starting the subprocedure
but then letting it execute in the background. This is especially true of integrated applications,
where the remote application may not be running or the network may be unavailable—the
source application may wish to simply make shared data available or log a request for a
subprocedure call, but then go on to other work confident that the remote application will act
sometime later.

As you can see, there are several different criteria that must be considered when choosing and
designing an integration approach. The question then becomes: Which integration approaches
best address which of these criteria?

Application Integration Options

There’s more than one approach for integrating applications. Each approach addresses some of
the integration criteria better than others. The various approaches can be summed up in four
main integration styles:

File Transfer — Have each application produce files of shared data for others to consume, and
consume files that others have produced.

Shared Database — Have the applications store the data they wish to share in a common
database.

Remote Procedure Invocation — Have each application expose some of its procedures so that
they can be invoked remotely, and have applications invoke those to run behavior and exchange
data.

Messaging — Have each application connect to a common messaging system, and exchange data
and invoke behavior using messages.

Each of the patterns has the same problem statement—the need to integrate applications—and
very similar contexts. What differentiates them is different forces searching for a more elegant
solution. Each pattern builds on the last, looking for a more sophisticated approach to address
the shortcomings of its predecessors. Thus the pattern order reflects an increasing order of
sophistication.

The trick is not to choose the one style to use always, but to choose the best style for a particular
integration opportunity. Each style has its advantages and disadvantages. Two applications may
integrate using multiple styles such that each point of integration takes advantage of the style
that suits it best. Likewise, an application may use different styles to integrate with different
applications, so as to choose the style that works best for the other application. Some integration
approaches can best be viewed as a hybrid of multiple styles. An integration product or EAI
middleware may employ a combination of styles, all of which are effectively hidden in the
product’s implementation.

The remainder of this book will expand on the Messaging pattern. We focus on messaging in part
because we believe it is often the best style for solving many integration opportunities. It is also
the least well understood of the integration styles and a technology ripe with patterns that
quickly explain how to make good use of it. Finally, messaging is the basis for many EAI
products, so explaining how to use messaging well also goes a long way in teaching you how to
use those products.

Familiarize yourself with these patterns to better understand the issues involved with application
integration, and to better understand how messaging fits into the mix.

File Transfer

(By Martin Fowler)

An enterprise has multiple applications that are being built independently, with different
languages and platforms.

How can I integrate multiple applications so that they work together and can exchange
information?

In an ideal world, you might imagine an organization operating from a single cohesive piece of
software, designed from the beginning to work in a unified and coherent way. Of course even the
smallest operations don't work like that. Multiple pieces of software handle different aspects of
the enterprise. This is due to a host of reasons.

People buy packages that are developed by outside organizations

Different system are built at different times, leading to different technology choices

Different systems are built by different people, whose experience and preferences lead them to
different approaches to building applications

Getting an application out and delivering value is more important than ensuring that integration
is addressed, especially when that integration isn't adding any value to the application under
development.

As a result, any organization has to worry about sharing information between very divergent
applications. These can be written in different languages, based on different platforms, and with
some different assumptions about how the business operates.

Tying such applications together requires a lot of knowledge of understanding how to link
together applications on both a business level and a technical level. To have any chance of getting
your head around it, you must minimize what you need to know about how each application
works.

What is needed is a common data transfer mechanism that can be used by a variety of languages
and platforms, yet seems natural to each. It should require a minimal amount of specialized
hardware and software, making use of that the enterprise already has available.

Files are a universal storage mechanism, built in to any enterprise operating system, available
from any enterprise language. The simplest approach would be to somehow integrate the
applications using files.

Have each application produce files containing information that other applications need to
consume. Integrators take the responsibility of transforming files into different formats.
Produce the files at regular intervals according to the nature of the business.

An important decision with files is what format to use. Very rarely will the output of one
application be exactly what's needed for another, so you'll have to do a fair bit of processing of
files along the way. Not just do all the applications that use a file have to read it, you also have to

be able to use processing tools on it. As a result, standard file formats have grown up over time.
Mainframe systems commonly use data feeds based on the file system formats of COBOL. Unix
systems use text based files. The modern fashion is to use XML. An industry of readers, writers,
and transformation tools has built up around each of these formats.

Another issue with files is when to produce them and consume them. Since there's a certain
amount of effort required to produce and process a file, you usually don't want to work with
them too frequently. Typically you have some regular business cycle that drives the decision:
nightly, weekly, quarterly, etc. Applications get used to when a new file is available and
processes it at its time.

The great advantage of files is that integrators need no knowledge of the internals of an
application. The application team itself usually provides the file. The file's contents and format
are negotiated with integrators, although if a package is used there's often limited choices. The
integrators then deal with the transformations required for other applications, or they leave it up
the consuming applications to decide how they want to manipulate and read the file.

As a result the different applications are quite nicely decoupled from each other. Each application
can make internal changes freely without affecting other applications, providing they still
produce the same data in the files in the same format. The files effectively become the interface of
each application.

Part of what makes File Transfer simple is that no extra tools or integration packages are needed,
but that also means that developers have to do a lot of the work themselves. The applications
must agree on file naming conventions and the directories they appear in. The writer of a file
must implement a strategy to keep the filenames unique. The applications must agree on which
one will delete old files, and that application will have to know when a file is old and no longer
needed. The applications will need to implement a locking mechanism or follow a timing
convention to ensure that one application is not trying to read the file while another is still
writing it. If all of the applications do not have access to the same disk, then some application
must take responsibility for transferring the file from one disk to another.

One of the most obvious issues with File Transfer is that updates tend to occur infrequently, as a
result systems can get out of synchronization. A customer management system can process a
change of address and produce an extract file each night, but the billing system may send out the
bill to old address on the same day. Sometimes lack of synchronization isn't a big deal. People
often expect a certain lag in getting information around, even with computers. At other times the
result of using stale information is a disaster. When deciding on when to produce files, you have
to take the freshness needs of consumers into account.

In fact, the biggest problem with staleness is often on the software development staff themselves,
who often have to live with data that isn't quite right. This can lead to inconsistencies that are
difficult to resolve. If a customer changes his address on the same day with two different systems,
but one of them makes an error and gets the wrong street name, you'll have two inconsistent
addresses for a customer. You'll need some way to figure out how to resolve this. The longer the
period between file transfer, the more likely and more painful this problem will become.

Of course, there's no reason that you can't produce files more frequently. Indeed you can think of
Messaging as File Transfer where you produce a file with every change in an application. The
problem then is managing all the files that get produced, ensuring they are all read and none get
lost. This goes beyond what file system based approaches can do, particularly since there are
expensive resource costs with processing a file, which get prohibitive if you want to produce lots
of files quickly. As a result, once you get to fine grained files like this, it's easier to think of them
as Messaging.

To make data available more quickly and enforce an agreed-upon set of data formats, use a Shared

Database. To integrate applications' functionality rather than their data, use Remote Procedure

Invocation. To enable frequent exchanges of small amounts of data, perhaps used to invoke remote
functionality, use Messaging.

Related patterns: Remote Procedure Invocation, Messaging, Shared Database

Shared Database

An enterprise has multiple applications that are being built independently, with different
languages and platforms. The enterprise needs information to be shared rapidly and consistently.

How can I integrate multiple applications so that they work together and can exchange
information?

File Transfer enables applications to share data, but can lack timeliness, yet timeliness of
integration is often a critical issue. If changes do not work their way quickly through a family of
applications, you are likely to do incorrect things due to the staleness of data. For modern
businesses, you want everyone to have the latest data as much as possible. Not just does this
reduce errors, it also increases people's trust in the data.

Rapid updates also allow inconsistencies to be handled better. The more frequently you
synchronize, the less likely you are to get inconsistencies and the less effort they are to deal with.
But however rapid the changes, there's still going to be problems. If an address is updated
inconsistently in rapid succession, how do I decide which one is the true address? I can take each
piece of data and say that one application is the master source for that data, but then I have to
remember who is the master for what data.

File Transfer also may not enforce data format sufficiently. Many of the problems in integration
come from incompatible ways of looking at the data. Often these represent subtle business issues
that can have a huge effect. A geological database may define an oil well as a single drilled hole,
which may or may not produce oil. A production database may define a well as multiple holes
covered by a single piece of equipment. These cases of semantic dissonance are much harder to deal
with than inconsistent data formats. (For a much deeper discussion of these issues, it's really
worth reading Data and Reality [Kent].)

What is needed is a central, agreed-upon datastore that all of the applications share, so that any
of them have access to any of the shared data whenever they need it.

Integrate applications by having them store their data in a single Shared Database.

If a family of integrated applications all rely on the same database, then you can be pretty sure
that they are always consistent all of the time. If you do get simultaneous updates to a single
piece of data from different sources, then you have transaction management systems that handle
that about as gracefully as it ever can be managed. Since the time between updates is so small,
any errors are much easier to find and fix.

Shared Database is made much easier by the widespread use of SQL-based relational databases.
Pretty much all application development platforms can work with SQL, often with quite
sophisticated tools. So you don't have to worry about multiple file formats. Since any application
pretty much has to use SQL anyway this avoid adding another technology for everyone to
master.

Since everyone is using the same database, this forces out problems in semantic dissonance.
Rather than leaving these problems to fester until they are difficult to solve with transforms, you
are forced to confront them and deal with them before the software goes live and you collect
large amounts of incompatible data.

One of the biggest difficulties with Shared Database is coming up with a suitable design for the
shared database. Coming up with a unified schema that can meet the needs of multiple
applications is a very difficult exercise, often resulting in a schema that application programmers
find difficult to work with.

If the technical difficulties of designing a unified schema aren't enough, there are also severe
political difficulties. If a critical application is likely to suffer delays in order to work with a
unified schema, then often there is irresistable pressure to separate. Human conflicts between
departments often exacerbate this problem.

Another, harder limit to Shared Database is external packages. Often they won't work with a
schema other than their own. Even if there is some room for adaptation, it's likely to be much
more limited than integrators would like. This problem also extends to integration after

development. Even if you can organize all your applications, you still have an integration
problem should a merger of companies occur.

Multiple applications using a Shared Database to frequently read and modify the same data can
cause performance bottlenecks and even deadlocks as each application locks others out of the
data. When the applications are distributed across multiple computers, the database must be
distributed as well so that each application can access the database locally, which confuses the
issue of which computer the data should be stored on. A distributed database with locking
conflicts can easily become a performance nightmare.

To integrate applications' functionality rather than their data, use Remote Procedure Invocation. To
enable frequent exchanges of small amounts of data, using a format per datatype rather than one
universal schema, use Messaging.

Related patterns: Remote Procedure Invocation, File Transfer, Messaging

Remote Procedure Invocation

(By Martin Fowler)

An enterprise has multiple applications that are being built independently, with different
languages and platforms. The enterprise needs to share data and processes in a responsive way.

How can I integrate multiple applications so that they work together and can exchange
information?

File Transfer and Shared Database enable applications to share their data, which is an important part
of application integration, but just sharing data is often not enough. Often changes in data lead to
things that have to be done across different applications. Changing an address may be a simple
change in data, or it may trigger registration and legal processes to take into account different
rules in different legal jurisdictions. Having one application to invoke such processes in other
would require applications to know far too much about the internals of other applications.

This problem mirrors classic problems in application design. One of the most powerful
structuring mechanisms in application design is that of encapsulation--where modules hide their
data through a function call interface. In this way, they can intercept changes in data to carry out
the various actions they need to do when the data is changed. Shared Database provides a large,
unencapsulated data structure, which makes it much harder to do this. File Transfer allows an
application to react to changes as it processes the file, but the process is delayed.

The fact that Shared Database has unencapsulated data also makes it more difficult to maintain a
family of integrated applications. Many changes in any application can trigger a change in the
database, and database changes have a considerable ripple effect through every application. As a
result, systems that use Shared Database are often very reluctant to change the database, which

means that the application development work is much less responsive to the changing needs of
the business.

What is needed is a mechanism for one application to invoke a function in another application,
passing the data that needs to be shared and invoking the function that tells the receiver
application how to process the data.

Develop each application as a large-scale object or component with encapsulated data. Provide
an interface to allow other applications to interact with the running application.

Remote Procedure Invocation applies the principle of encapsulation to integrating applications. If an
application needs some information that is owned by another application, it asks that application
directly. If one application needs to modify the data of another, then it does so by making a call to
the other application. Each application can maintain the integrity of the data it owns.
Furthermore, each application can alter its internal data without having every other application
be affected.

There are a number of Remote Procedure Call (RPC) approaches: CORBA, COM, .NET Remoting,
Java RMI, etc. These vary as to how many systems support them and their ease of use. Often
these environments add additional capabilities, such as transactions.

For sheer ubiquity, the current fashionable favorite is Web Services using standards such as
SOAP and XML. A particularly valuable feature of web services is that they work easily with
HTTP, which is easy to get through firewalls.

The fact that there are methods that wrap the data make it easier to deal with semantic
dissonance. Applications can provide multiple interfaces to the same data, allowing some clients
to see one style and others another. Even updates can use multiple interfaces. This provides a lot
more ability to support multiple points of view than relational views. However, it is awkward for
integrators to add transformation components, so each application has to negotiate its interface
with its neighbors.

Since software developers are used to procedure calls, Remote Procedure Invocation fits in nicely with
what they are already used to. Actually, this is more of a disadvantage than it is an advantage.
There are big differences in performance and reliability between remote and local procedure calls.
If people don't understand these, then Remote Procedure Invocation can lead to slow and unreliable
systems (see [Waldo]).

Although the encapsulation helps reduce the coupling of the applications, by eliminating a large
shared data structure, the applications are still fairly tightly coupled together. The remote calls
each system supports tends to tie the different systems into a growing knot. In particular,
sequencing--doing certain things in a particular order--can make it difficult to change systems
independently. Often these become problems because issues that aren't significant within a single
application become so when integrating applications. People often design the integration the way
they would design a single application, unaware that the rules change.

To enable frequent exchanges of small amounts of data, perhaps used to invoke remote
functionality, use Messaging.

Related patterns: File Transfer, Messaging, Shared Database

Messaging

An enterprise has multiple applications that are being built independently, with different
languages and platforms. The enterprise needs to share data and processes in a responsive way.

How can I integrate multiple applications so that they work together and can exchange
information?

File Transfer and Shared Database enable applications to share their data, but not their functionality.
Remote Procedure Invocation enables applications to share functionality, but tightly couples them in
the process. Often the challenge of integration is about making collaboration between separate
systems as timely as possible, without coupling systems together in such a way that makes them
unreliable, either in terms of application execution or application development.

File Transfer allows you keep the applications very well decoupled, but at the cost of timeliness.
Systems just can't keep up with each other. Collaborative behavior is way too slow. Shared

Database keeps data together in a responsive way, but at the cost of coupling everything to the
database. It also fails to handle collaborative behavior.

Faced with these problems, Remote Procedure Invocation seems an appealing choice. But extending a
model used for a single application to application integration runs into plenty of other
weaknesses. These weaknesses start with the essential problems of distributed development.
Despite the fact that remote procedure calls look like local calls, they don't act the same. Remote
calls are slower, and can fail. With multiple applications communicating across an enterprise, you
don't want one application's failure to bring down all of the other applications. Also, you don't
want to design a system assuming that calls are fast and you don't want each application
knowing details of other applications, even if it's only details about their interfaces.

What we need is something like File Transfer where lots of little data packets can be produced
quickly, transferred easily, and the receiver application is automatically notified when a new
packet is available for consumption. The transfer needs a retry mechanism to make sure it

succeeds. The details of any disk structure or database for storing the data needs to be hidden
from the applications so that, unlike Shared Database, the storage schema and details can be easily
changed to reflect the changing needs of the enterprise. One application should be able to send a
packet of data to another application to invoke behavior in the other application, like Remote

Procedure Invocation, but without being prone to failure. The data transfer should be asynchronous
so that the sender does not need to wait on the receiver, especially when retry is necessary.

Use Messaging to transfer packets of data frequently, immediately, reliably, and asynchronously,
using customizable formats.

Asynchronous messaging is fundamentally a pragmatic reaction to the problems of distributed
systems. Sending a message does not require both systems to be up and ready at the same time.
Furthermore, thinking about the communication in an asynchronous manner forces developers to
recognize that working with a remote application is slower, which encourages design of
components with high cohesion (lots of work locally) and low adhesion (selective work
remotely).

Messaging systems also allow much of the decoupling you get when using File Transfer. Messages
can be transformed in transit without either the sender or receiver knowing about the
transformation. Indeed the decoupling allows integrators to broadcast messages to multiple
receivers, support choosing one of many potential receivers, and other topologies that allow
integration to be separated from the development of the applications. Since human issues tend to
separate application development from application integration, this approach works with human
nature rather than against it.

The transformation means that separate applications can have quite different conceptual models.
Of course this means that semantic dissonance will occur, but the messaging viewpoint is the
measure that Shared Database takes to avoid semantic dissonance are too complicated to work in
practice, and can't be done after the fact with packages or in enterprise merges.

By sending small messages frequently, you also allow applications to collaborate behaviorally as
well as share data. If a process needs to be launched once an insurance claim is received, it can be
done immediately as a message when a single claim comes in. Information can be requested and
a reply made rapidly. While such collaboration isn't going to be as fast as Remote Procedure

Invocation, the caller needn't stop while the message is being processed and the response returned.
And messaging isn't as slow as many people think -- many messaging solutions originated in the
financial services industry where thousands of stock quotes or trades have to pass through a
messaging system every second.

This book is about Messaging, so you can therefore assume that we consider Messaging to be
generally the best approach to enterprise application integration. But you shouldn't assume that
we think it's free of problems.

The high frequency of messages in Messaging reduces many of the inconsistency problems that
bedevil File Transfer, but it doesn't entirely remove them. There is still going to be some lag
problems with systems not being updated quite simultaneously.

Asynchronous design is not the way most software people are taught, and as a result there's a
whole host of different rules and techniques in place. The messaging context makes this a bit
easier than programming in a asynchronous application environment like X windows, but
asynchrony still has a learning curve. Testing and debugging are also harder in this environment.

The ability to transform messages has the nice benefit of allowing applications to be much more
decoupled from each other than in Remote Procedure Invocation and File Transfer. But this
independence does mean that integrators are often left with writing a lot of messy glue code to fit
everything together.

Once you decide that you want to use Messaging for system integration, there are a number of new
issues to consider and practices you can employ. How do you transfer packets of data? A sender
sends data to a receiver by sending a Message via a Message Channel that connects the sender and
receiver. How do you know where to send the data? If the sender does not know where to
address the data to, it can send the data to a Message Router, which will direct the data to the
proper receiver. How do you know what data format to use? If the sender and receiver do not
agree on the data format, the sender can direct the data to a Message Translator that will convert the
data to the receiver's format and then forward the data to the receiver. If you're an application
developer, how do you connect your application to the messaging system? An application that
wishes to use messaging will implement Message Endpoints to perform the actual sending and
receiving.

Related patterns: Remote Procedure Invocation, File Transfer, Message, Message Channel, Message Endpoint,
Message Router, Message Translator, Shared Database

3．Messaging Systems

Introduction

In Introduction to Integration Styles, we discussed the various options for connecting applications
with one another, including Messaging. Messaging makes applications loosely coupled by
communicating asynchronously, which also makes the communication more reliable because the
two applications do not have to be running at the same time. Messaging makes the messaging
system responsible for transferring data from one application to another, so the applications can
focus on what data they need to share but not worry so much about how to share it.

Basic Messaging Concepts

Like most technologies, Messaging involves certain basic concepts. Once you understand these
concepts, you can make sense of the technology even before you understand all of the details
about how to use it. These basic messaging concepts are:

Channels — Messaging applications transmit data through a Message Channel, a virtual pipe that
connects a sender to a receiver. A newly installed messaging system doesn’t contain any channels;
you must determine how your applications need to communicate and then create the channels to
facilitate it.

Messages — A Message is an atomic packet of data that can be transmitted on a channel. Thus to
transmit data, an application must break the data into one or more packets, wrap each packet as a
message, and then send the message on a channel. Likewise, a receiver application receives a
message and must extract the data from the message to process it. The message system will try
repeatedly to deliver the message (e.g., transmit it from the sender to the receiver) until it
succeeds.

Multi-step delivery — In the simplest case, the message system delivers a message directly from
the sender’s computer to the receiver’s computer. However, actions often need to be performed
on the message after it is sent by its original sender but before it is received by its final receiver.
For example, the message may have to be validated or transformed because the receiver expects a
different message format than the sender. A Pipes and Filters architecture describes how multiple
processing steps can be chained together using channels.

Routing — In a large enterprise with numerous applications and channels to connect them, a
message may have to go through several channels to reach its final destination. The route a
message must follow may be so complex that the original sender does not know what channel
will get the message to the final receiver. Instead, the original sender sends the message to a
Message Router, an application component and filter in the pipes-and-filters architecture, which

will determine how to navigate the channel topology and direct the message to the final receiver,
or at least to the next router.

Transformation — Various applications may not agree on the format for the same conceptual
data; the sender formats the message one way, yet the receiver expects it to be formatted another
way. To reconcile this, the message must go through an intermediate filter, a Message Translator,
that converts the message from one format to another.

Endpoints — An application does not have some built-in capability to interface with a messaging
system. Rather, it must contain a layer of code that knows both how the application works and
how the messaging system works, bridging the two so that they work together. This bridge code
is a set of coordinated Message Endpoints that enable the application to send and receive
messages.

Book Organization

The patterns in this chapter provide you with the basic vocabulary and understanding of how to
achieve enterprise integration using Messaging. All subsequent chapters build upon the base
patterns in this chapter.

Relationship of Root Patterns and Chapters

This chapter provides a broad overview of Messaging by introducing the main messaging topics.
For more details about one of these topics, skip ahead to the chapter that contains more patterns
which cover that topic in greater depth.

Message Channel

An enterprise has two separate applications that need to communicate, preferably by using
Messaging.

How does one application communicate with another using messaging?

Once a group of applications have a messaging system available, it's tempting to think that any
application can communicate with any other application any time desired. Yet the messaging
system does not magically connect all of the applications.

Applications Magically Connected

Likewise, it's not like an application just randomly throws information out into the messaging
system while other applications just randomly grab whatever information they run across. (Even
if this would work, it'd be very inefficient.) Rather, the application sending out the information
knows what sort of information it is, and the applications that would like to receive information
aren't looking for just any information, but for particular sorts of information they can use.

So the messaging system isn't a big bucket that applications throw information into and pull
information out of. It's a set of connections that enable applications to communicate by
transmitting information in predetermined, predictable ways.

Connect the applications using a Message Channel, where one application writes information
to the channel and the other one reads that information from the channel.

When an application has information to communicate, it doesn't just fling the information into
the messaging system, it adds the information to a particular Message Channel. An application
receiving information doesn't just pick it up at random from the messaging system; it retrieves
the information from a particular Message Channel.

The application adding info doesn't necessarily know what particular application will end up
retrieving the info, but it can be assured that whatever application retrieves the info, that
application will be interested in the info. This is because the messaging system has different
Message Channels for different types of information the applications want to communicate. When
an application sends information, it doesn't randomly add the info to any channel available; it
adds the info to a channel whose specific purpose is to communicate that sort of information.
Likewise, an application that wants to receive particular information doesn't pull info off some
random channel; it selects what channel to get information from based on what type of
information it wants.

Channels are logical addresses in the messaging system; how they're actually implemented
depends on the messaging system product and its implementation. Perhaps every Message
Endpoint has a direct connection to every other endpoint, or perhaps they're all connected
through a central hub. Perhaps several separate logical channels are configured as one physical
channel that nevertheless keeps straight which messages are intended for which destination. The
set of defined logical channels hides these configuration details from the applications.

A messaging system doesn't automatically come preconfigured with all of the message channels
the applications need to communicate. Rather, the developers designing the applications and the
communication between them have to decide what channels will be needed for the
communication. Then the system administrator who installs the messaging system software must
also configure it to set up the channels that the applications expect. While some messaging
system implementations support creating new channels while the applications are running, this
isn't very useful because other applications besides the one that creates the channel have to know
about the new channel so that they can start using it too. Thus the number and purpose of
channels available tend to be fixed at deployment time. (There are exceptions to this rule; see
Introduction to Messaging Channels.)

Something that often fools developers when they first get started with using a messaging system
is what exactly needs to be done to create a channel. A developer can write JMS code that
includes calling the method createQueue, or .NET code that includes new MessageQueue, but
neither of these bits of code actually allocates a new queue resource in the messaging system.
Rather, these pieces of code provide access to a resource that already exists in the messaging
system and was already created in the messaging system separately using its administration
tools.

Another issue to keep in mind when designing the channels for a messaging system: Channels
are cheap, but they're not free. Applications need multiple channels for transmitting different
types of information and transmitting the same information to lots of other applications. Each
channel requires memory to represent the messages; persistent channels require disk space as
well. Even if an enterprise system has unlimited memory and disk space, any messaging system
implementation usually has some hard or practical limit to how many channels it can service
consistently. So plan on creating new channels as your application needs them, but if it needs
thousands of channels, or needs to scale in ways that may require thousands of channels, you'll
need to choose a highly scalable messaging system implementation and test that scalability to

make sure it meets your needs. Datatype Channel helps you determine when you need another
channel. Selective Consumer makes one physical channel act logically like multiple channels.

A Little Bit of Messaging Vocabulary

So what do we call the applications that communicate via a Message Channel? There are a number of terms out there that are

largely equivalent. The most generic terms are probably Sender and Receiver — an application sends a message to a Message

Channel to be received by another application. Another popular term is Producer and Consumer. Equally popular is Publisher and

Subscriber — they are more geared towards Publish-Subscribe Channels, but are often times used in generic form. Sometimes

we also say that an application listens on a channel that another application talks to. In the world of Web services, we generally

talk about a Requester and Provider. These terms usually imply that the requester sends a message to the provider and receives

a response back. In the old days we called these Client and Server — the terms are equivalent, but saying client and server is

less cool. Now it gets gets confusing: when dealing with Web services, sometimes the application that sends a message to the

provider is considered a Consumer of the service. We can think of it in such a way that consumer sends a message to the provider

and then consumes the response. Luckily, usage of the term in this way occurs only in RPC scenarios. An application that sends

or receives messages may be called a Client of the messaging system; a more specific term is Endpoint or Message Endpoint.

Channel Names

If channels are logical addresses, what do these addresses look like? Like in so many cases, the detailed answer depends on the

implementation of the messaging system. Nevertheless, in most cases channels are referenced by an alphanumeric name, such

as MyChannel. Many messaging systems support a hierarchical channel naming scheme, which enables you to organize channels

in a way that is similar to a file system with folders and subfolders. For example, MyCorp/Prod/OrderProcessing/NewOrders would

indicate a channel that is used in a production application at MyCorp and contains new orders.

There are two different kinds of message channels, Point-to-Point Channels and Publish-Subscribe
Channels. Mixing different data types on the same channel causes a lot of confusion; to avoid this
confusion, use separate Datatype Channels. Applications that use messaging often benefit from a
special channel for invalid messages, an Invalid Message Channel. Applications that wish to use
Messaging but do not have access to a messaging client can still connect to the messaging system
using Channel Adapters. A well designed set of channels forms a Message Bus that acts like a
messaging API for a whole group of applications.

Example: Stock Trading

When a stock trading application makes a trade, it puts the request on a Message Channel for trade
requests. Another application that processes trade requests will look for ones to process on that
same message channel. If the requesting application needs to request a stock quote, it will
probably use a different message channel, one designed for stock quotes, so that the quote
requests stay separate from the trade requests.

Example: J2EE JMS Reference Implementation

Let's look at how to create a Message Channel in JMS. The J2EE SDK ships with a reference
implementation of the J2EE services, including JMS. The reference server can be started with the

j2ee command. Message channels have to be configured using the j2eeadmin tool. This tool can
configure both queues and topics:

j2eeadmin -addJmsDestination jms/mytopic topic

j2eeadmin -addJmsDestination jms/myqueue queue

Once the channels have been administered (created), they can then be accessed by JMS client
code:

Context jndiContext = new InitialContext();

Queue myQueue = (Queue) jndiContext.lookup("jms/myqueue");

Topic myTopic = (Topic) jndiContext.lookup("jms/mytopic");

The JNDI lookup doesn't create the queue (or topic); it was already created by the j2eeadmin
command. The JNDI loookup simply creates a Queue instance in Java that models and provides
access to the queue structure in the messaging system.

Example: IBM WebSphere MQ

If your messaging system implementation is IBM's WebSphere MQ for Java, which implements
JMS, you'll use the WebSphere MQ JMS administration tool to create destinations. This will
create a queue named “myQueue”:

DEFINE Q(myQueue)

Once that queue exists in WebSphere MQ, an application can then access the queue.

WebSphere MQ, without the full WebSphere Application Server, does not include a JNDI
implementation, so we cannot use JNDI to lookup the queue as we did in the J2EE example.
Rather, we must access the queue via a JMS session, like this:

Session session = // create the session

Queue queue = session.createQueue("myQueue");

Example: Microsoft MSMQ

MSMQ provides a number of different ways to create a message channel, called a queue. You can
create a queue using the Microsoft Message Queue Explorer or the Computer Management
console (see picture). From here you can set queue properties or delete queues.

Alternatively, you can create the queue using code:

using System.Messaging;

...

MessageQueue.Create("MyQueue");

Once the queue is created, an application can access it by creating a MessageQueue instance:

MessageQueue mq = new MessageQueue("MyQueue");

Related patterns: Channel Adapter, Datatype Channel, Invalid Message Channel, Message Bus, Message
Endpoint, Selective Consumer, Messaging, Introduction to Messaging Channels, Point-to-Point Channel,
Publish-Subscribe Channel

Message

An enterprise has two separate applications that are communicating via Messaging, using a
Message Channel that connects them.

How can two applications connected by a message channel exchange a piece of information?

A Message Channel can often be thought of as a pipe, a conduit from one application to another. It
might stand to reason then that data could be shoved in one end, like water, and it would come
flowing out the other end. But data isn't one continuous stream; it is units, such as records,
objects, database rows, and the like. So a channel must transmit units of data.

What does it mean to "transmit" data? In a function call, the caller can pass a parameter by
reference by passing a pointer to the data's address in memory; this works because both the caller
and the function share the same memory heap. Similarly, two threads in the same process can
pass a record or object by passing a pointer, since they both share the same memory space.

Two separate processes passing a piece of data have more work to do. Since they each have their
own memory space, they have to copy the data from one memory space to the other. The data is
usually transmitted as a byte stream, the most basic form of data, which means that the first
process must marshal the data into byte form, copy it from the first process to the second one,
which will then unmarshal the data back into its original form, a copy of the original data in the
first process. Marshalling is how an RPC sends arguments to the remote process, and how the
process returns the result.

So messaging transmits discrete units of data, and does so by marshalling the data from the
sender and unmarshalling it in the receiver so that the receiver has its own local copy. What
would be helpful would be a simple way to wrap a unit of data such that it is appropriate to
transmit the data on a messaging channel.

Package the information into a Message, a data record that the messaging system can transmit
through a message channel.

Thus any data that is to be transmitted via a messaging system must be converted into one or
more messages that can be sent through messaging channels.

A message consists of two basic parts:

1. Header – Information used by the messaging system that describes the data being
transmitted, its origin, its destination, and so on.

2. Body – The data being transmitted; generally ignored by the messaging system and
simply transmitted as-is.

This concept is not unique to messaging. Both postal service mail and e-mail send data as discrete
mail messages. An Ethernet network transmits data as packets, as does the IP part of TCP/IP
such as the Internet. Streaming media on the Internet is actually a series of packets.

To the messaging system, all messages are the same: Some body of data to be transmitted as
described by the header. However, to the applications programmer, there are different types of
messages, i.e., different application styles of use. Use a Command Message to invoke a procedure
in another application. Use a Document Message to pass a set of data to another application. Use

an Event Message to notify another application of a change in this application. If the other
application should send a reply back, use Request-Reply.

If an application wishes to send more information than one message can hold, break the data into
smaller parts and send the parts as a Message Sequence. If the data is only useful for a limited
amount of time, specify this use-by time as a Message Expiration. Since all the various senders and
receivers of messages must agree on the format of the data in the messages, specify the format as
a Canonical Data Model.

Example: JMS Message

In JMS, a message is represented by the type Message, which has several subtypes. In each
subtype, the header structure is the same; it's the body format that varies by type.

• TextMessage – The most common type of message. The body is a String, such as a text file or an XML
document. textMessage.getText() returns a String.

• BytesMessage – The simplest, most universal type of message. The body is a byte array.
bytesMessage.readBytes(byteArray) copies the contents into the specified byte array.

• ObjectMessage – The body is a single Java object, specifically one that implements
java.io.Serializable, which enables the object to be marshaled and unmarshaled.

objectMessage.getObject() returns the Serializable.

• StreamMessage – The body is a stream of Java primitives. The receiver uses methods like readBoolean(),
readChar(), and readDouble() to read the data from the message.

• MapMessage – The body acts like a java.util.Map, where the keys are Strings. The receiver uses
methods like getBoolean("isEnabled") and getInt("numberOfItems") to read the data from the

message.

Example: .NET Message

In .NET, the Message class implements the message type. It has a property, Body, which contains
the contents of the message as an Object; BodyStream stores the contents as a Stream. Another
property, BodyType, is an int that specifies the type of data the body contains, such as a string, a
date, a currency, or a number.

Example: SOAP Message

In the SOAP protocol [SOAP 1.1], a SOAP message is an example of this Message pattern. A
SOAP message is an XML document that is an envelope (a root SOAP-ENV:Envelope element) that
contains an optional header (a SOAP-ENV:Header element) and required body (a SOAP-ENV:Body
element). This XML document is an atomic data record that can be transmitted (typically the
transmission protocol is HTTP) so it is a message.

Here is an example of a SOAP message from the SOAP spec that shows an envelope containing a
header and a body:

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <SOAP-ENV:Header>

 <t:Transaction

 xmlns:t="some-URI"

 SOAP-ENV:mustUnderstand="1">

 5

 </t:Transaction>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <m:GetLastTradePrice xmlns:m="Some-URI">

 <symbol>DEF</symbol>

 </m:GetLastTradePrice>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP also demonstrates the recurssive nature of messages, because a SOAP message can be
transmitted via a messaging system, which means that a messaging system message (such as
javax.jms.Message or System.Messaging.Message) contains the SOAP message (the XML
SOAP-ENV:Envelope document). In this scenario, the transport protocol isn't HTTP, it's the
messaging system (which in turn may be using HTTP or some other network protocol to transmit
the data, but the messaging system makes the transmission reliable).

Related patterns: Canonical Data Model, Command Message, Document Message, Event Message,
Message Channel, Message Expiration, Message Sequence, Messaging, Request-Reply

Pipes and Filters

In many enterprise integration scenarios, a single event triggers a sequence of processing steps,
each performing a specific function. For example, let's assume a new order arrives in our
enterprise in the form of a message. One requirement may be that the message is encrypted to
prevent eavesdroppers from spying on a customer's order. A second requirement is that the
messages contain authentication information in the form of a digital certificate to ensure that
orders are placed only by trusted customers. In addition, duplicate messages could be sent from
external parties (remember all the warnings on the popular shopping sites to click the 'Order
Now' button only once?). To avoid duplicate shipments and unhappy customers, we need to
eliminate duplicate messages before subsequent order processing steps are initiated. To meet
these requirements, we need to transform a stream of possibly duplicated, encrypted messages
containing extra authentication data into a stream of unique, simple plain-text order messages
without the extraneous data fields.

How can we perform complex processing on a message while maintaining independence and
flexibility?

One possible solution would be to write a comprehensive 'incoming message massaging module'
that performs all the necessary functions. However, such an approach would be inflexible and
difficult to test. What if we need to add a step or remove one? For example, what if orders can be
placed by large customers who are on a private network and do not require encryption?

Implementing all functions inside a single component also reduces opportunities for reuse.
Creating smaller, well-defined components allows us to reuse them in other processes. For
example, order status messages may be encrypted but do not need to be de-duped because
duplicate status requests are generally not harmful. Separating the decryption function into a
separate modules allows us to reuse the decryption function for other messages.

Integration solutions are typically a collection of heterogeneous systems. As a result, different
processing steps may need to execute on different physical machines, for example because
individual processing steps can only execute on a specific systems. For example, it is possible that
the private key required to decrypt incoming messages is only available on a designated machine
and cannot be accessed from any other machine for security reasons. This means that the
decryption component has to execute on this designated machine while the other steps may
execute on other machines. Likewise, different processing steps may be implemented using
different programming languages or technologies that prevent them from running inside the
same process or even on the same computer.

Implementing each function in a separate component can still introduce dependencies between
components. For example, if the decryption component calls the authentication component with
the results of the decryption, we cannot use the decryption function without the authentication
function. We could resolve these dependencies if we could 'compose' existing components into a
sequence of processing steps in such a way that each component is independent from the other
components in the system. This would imply that components expose generic external interfaces
so that they are interchangeable.

If we use asynchronous messaging we should take advantage of the asynchronous aspects of
sending messages from one component to another. For example, a component can send a
message to another component for further processing without waiting for the results. Using this
technique, we could process multiple messages in parallel, on inside each component.

Use the Pipes and Filters architectural style to divide a larger processing task into a sequence
of smaller, independent processing steps (Filters) that are connected by channels (Pipes).

Each filter exposes a very simple interface: it receives messages on the inbound pipe, processes
the message, and publishes the results to the outbound pipe. The pipe connects one filter to the
next, sending output messages from one filter to the next. Because all component use the same
external interface they can be composed into different solutions by connecting the components to
different pipes. We can add new filters, omit existing ones or rearrange them into a new sequence
-- all without having to change the filters themselves. The connection between filter and pipe is
sometimes called port. In the basic form, each filter component has one input port and one output
port.

When applied to our example problem, the Pipes and Filters architecture results in three filters,
connected by two pipes (see picture). We need one additional pipe to send messages to the
decryption component and one to send the clear-text order messages from the de-duper to the
order management system. This makes for a total of four pipes.

Pipes and Filters describe a fundamental architectural style for messaging systems: individual
processing steps ("filters") are chained together through the messaging channels ("pipes"). Many
patterns in this and the following sections, e.g. routing and transformation patterns, are based on
this Pipes and Filters architectural style. This allows us to easily combine individual patterns into
larger solutions.

The Pipes and Filters style uses abstract pipes to decouple components from each other. The pipe
allows one component to send a message into the pipe so that it can be consumed later by
another process that is unknown to the component. The obvious implementation for such a pipe
is the Message Channel we just described at the beginning of this chapter. Most Message Channels
provide language, platform and location independence between the filters. This affords us the
flexibility to move a processing step to a different machine for dependency, maintenance or
performance reasons. However, a Message Channel provided by a messaging infrastructure can be
quite heavyweight if all components can in fact reside on the same machine. Using a simple
in-memory queue to implement the pipes would be much more efficient. Therefore, it is useful to
design the components so that they communicate with an abstract pipe interface. The
implementation of that interface can then be swapped out to use a Message Channel or an
alternative implementation such as an in-memory queue. The Messaging Gateway describes how
to design components for this flexibility.

One of the potential downsides of a Pipes and Filters architecture is the larger number of required
channels. First, channels may not be an unlimited resource as channels provide buffering and
other functions that consume memory and CPU cycles. Also, publishing a message to a channel
involves a certain amount of overhead because the data has to be translated from the
application-internal format into the messaging infrastructure's own format. At the receiving end
this process has to be reversed. If we are using a long chain of filters, we are paying for the gain
in flexibility with potentially lower performance due to repeated message data conversion.

The pure form of Pipes and Filters allows each filter to have only a single input port and a single
output port. When dealing with Messaging we can relax this property somewhat. A component
may consume messages off more than one channel and also output messages to more than one

channel (for example, a Message Router). Likewise, multiple filter components can consume
messages off a single Message Channel. A Point-to-Point Channel ensures that only one filter
component consumes each message.

Using Pipes and Filters also improves testability, an often overlooked benefit. We can test each
individual processing steps by passing a Test Message to the component and comparing the
results to the expected outcome. It is more efficient to test and debug each core function in
isolation because we can tailor the test mechanism to the specific function. For example, to test
the encryption / decryption function we can pass in a large number of messages containing
random data. After we encrypt and decrypt each message we compare it with the original. On
the other hand, to test authentication, we need to supply messages with specific authentication
codes that match known users in the system.

Pipeline Processing

Connecting components with asynchronous Message Channels allows each unit in the chain to
operate in its own thread or its own process. When a unit has completed processing one message
it can send the message to the output channel and immediately start processing another message.
It does not have to wait for the subsequent components to read and process the message. This
allows multiple messages to be processed concurrently as they pass through the individual stages.
For example, after the first message has been decrypted, it can be passed on to the authentication
component. At the same time, the next message can already be decrypted (see picture). We call
such a configuration a processing pipeline because messages flow through the filters like liquid
flows through a pipe. When compared to strictly sequential processing, a processing pipeline can
significantly increase system throughput.

Pipeline Processing with Pipes-and-Filters

Parallel Processing

However, the overall system throughput is limited by the slowest process in the chain. To
improve throughput we can deploy multiple parallel instances of that process to improve
throughput. In this scenario, a Point-to-Point Channel with Competing Consumers is needed to
guarantee that each message on the channel is consumed by exactly one of N available processors.
This allows us to speed up the most time-intensive process and improve overall throughput.
However, this configuration can cause messages to be processed out of order. If the sequence of
messages is critical, we can only run one instance of each component or use a Resequencer.

For example, if we assume that decrypting a message is much slower than authenticating it, we
can use the above configuration (see picture), running three parallel instances of the decryption
component. Parallelizing filters works best if each filter is stateless, i.e. it returns to the previous
state after a message has been processed. This means that we cannot easily run multiple parallel
de-dup components because the component maintains a history of all messages that it already
received and is therefore not stateless.

History of Pipes-and-Filters

Pipes and Filters architectures are by no means a new concept. The simple elegance of this
architecture combined with the flexibility and high throughput makes it easy to understand the
popularity of Pipes and Filters architectures. The simple semantics also allow formal methods to
be used to describe the architecture.

Kahn described Kahn Process Networks in 1974 as a set of parallel processes that are connected
by unbounded FIFO (First-In, First-Out) channels [Kahn]. [Garlan] contains a good chapter on
different architectural styles, including Pipes and Filters. [Monroe] gives a detailed treatment of
the relationships between architectural styles and design patterns. [PLOPD1] contains Regine
Meunier's "The Pipes and Filters Architecture" which formed the basis for the Pipes and Filters
pattern included in [POSA]. Almost all integration-related implementations of Pipes and Filters
follow the 'Scenario IV' presented in [POSA], using active filters that pull, process and push
independently from and to queuing pipes. The pattern described by Buschmann assumes that
each element undergoes the same processing steps as it is passed from filter to filter. This is
generally not the case in an integration scenario. In many instances, messages have to be routed

dynamically based on message content or external control. In fact, routing is such a common
occurrence in enterprise integration that it warrants its own patterns, the Message Router.

Pipes and Filters share some similarities with the concept of Communicating Sequential Processes
(CSPs). Introduced by Hoare in 1978 [CSP], CSPs provide a simple model to describe
synchronization problems that occur in parallel processing systems. The basic mechanism
underlying CSPs is the synchronization of two processes via input-output (I/O). I/O occurs
when process A indicates that it is ready to output to process B, and process B states that it is
ready to input from process A. If one of these happens without the other being true, the process is
put on a wait queue until the other process is ready. CSPs are different from integration solutions
in that they are not as loosely coupled, nor do the "pipes" provide any queuing mechanisms.
Nevertheless, we can benefit from the extensive treatment of CSPs in the academic world.

Vocabulary

When discussing Pipes and Filters architectures we need to be cautious with the term 'filter'. We later define two additional

patterns, the Message Filter and the Content Filter. While both of these are special cases of a generic filter, so are many other

patterns in this pattern language. In other words, a pattern does not have to involve a filtering function (e.g. eliminating fields

or messages) in order to be a filter in the sense of Pipes and Filters. We could have avoided this confusion be renaming the Pipes

and Filters architectural style. However, we felt that Pipes and Filters are such an important and widely discussed concept that

it would be even more confusing if we gave it a new name. We are trying to use the word 'filter' cautiously throughout these

patterns and try to make it clear whether we are talking about a generic filter a la Pipes and Filters or a Message Filter / Content

Filter to filter messages. In places where we felt that there is still room for confusion, we generally termed the generic filter as

'component' which is a generic enough (and often enough abused) term that should not get us into trouble.

Example: Simple Filter in C# and MSMQ

The following code snippet shows a generic base class for a filter with one input port and one
output port. The base implementation simply prints the body of the received message and sends
it to the output port. A more interesting filter would subclass the Processor class and override the
ProcessMessage method to perform additional actions on the message, e.g. transform the message
content or route it to different output channels.

You notice that the Processor requires references to an input and output channel in order to be
instantiated. The class is not tied to specific channels nor any other filter. This allows us to
instantiate multiple filters and chain them together in arbitrary configurations.

using System;

using System.Messaging;

namespace PipesAndFilters

{

 public class Processor

 {

 protected MessageQueue inputQueue;

 protected MessageQueue outputQueue;

 public Processor (MessageQueue inputQueue, MessageQueue outputQueue)

 {

 this.inputQueue = inputQueue;

 this.outputQueue = outputQueue;

 }

 public void Process()

 {

 inputQueue.ReceiveCompleted += new

ReceiveCompletedEventHandler(OnReceiveCompleted);

 inputQueue.BeginReceive();

 }

 private void OnReceiveCompleted(Object source, ReceiveCompletedEventArgs

asyncResult)

 {

 MessageQueue mq = (MessageQueue)source;

 Message inputMessage = mq.EndReceive(asyncResult.AsyncResult);

 inputMessage.Formatter = new System.Messaging.XmlMessageFormatter(new

String[] {"System.String,mscorlib"});

 Message outputMessage = ProcessMessage(inputMessage);

 outputQueue.Send(outputMessage);

 mq.BeginReceive();

 }

 protected virtual Message ProcessMessage(Message m)

 {

 Console.WriteLine("Received Message: " + m.Body);

 return (m);

 }

 }

}

This implementation is a Event-Driven Consumer. The Process method registers for incoming
messages and instructs the messaging system to invoke the method OnReceiveCompleted every
time a message arrives. This method extracts the message data from the incoming event object
and calls the virtual method ProcessMessage.

This simple filter example is not transactional. If an error occurs while processing the message
(before it is sent to the output channel) the message is lost. This is generally not desirable in a
production environment. See Transactional Client for a solution to this problem.

Related patterns: Competing Consumers, Content Filter, Event-Driven Consumer, Message Filter,
Message Channel, Message Router, Messaging, Messaging Gateway, Point-to-Point Channel, Resequencer,
Test Message, Transactional Client

Message Router

Multiple processing steps in a Pipes and Filters chain are connected by Message Channels.

How can you decouple individual processing steps so that messages can be passed to different
filters depending on a set of conditions?

The Pipes and Filters architectural style connects filters directly to one another with fixed pipes.
This makes sense because many applications of the Pipes and Filters pattern (e.g., [POSA]) are
based on a large set of data items, each of which undergoes the same, sequential processing steps.
For example, a compiler will always execute the lexical analysis first, the syntactic analysis
second and the semantic analysis least. Message-based integration solutions, on the other hand,
deal with individual messages which are not necessarily associated with a single, larger data set.
As a result, individual messages are more likely to require a different series of processing steps.

A Message Channel decouples the sender and the receiver of a Message. This means that multiple
applications can publish Messages to a Message Channel. As a result, a message channel can
contain messages from different sources that may have to be treated differently based on the type
of the message or other criteria. You could create a separate Message Channel for each message
type (a concept explained in more detail later as a Datatype Channel) and connect each channel to
the required processing steps for that message type. However, this would require the message
originators to be aware of the selection criteria for different processing steps, so that they can
publish the message to the correct channel. It could also lead to an explosion of the number of
Message Channels. Also, the decision on which steps the message undergoes may not just depend
on the origin of the message. For example, we could imagine a situation where the destination of
a message changes by the number of messages that have passed through the channel so far. No
single originator would know this number and would therefore be unable to send the message to
the correct channel.

Message Channels provide a very basic form of routing capabilities. An application publishes a
Message to a Message Channel and has no further knowledge of that Message's destination.
Therefore, the path of the Message can change depending on which component subscribes to the
Message Channel. However, this type of 'routing' does not take into account the properties of
individual messages. Once a components subscribes to a Message Channel it will by default
consume all messages from that channel regardless of the individual messages' specific
properties. This behavior is similar to the use of the pipe symbol in Unix. It allows you to

compose processes into a Pipes and Filters chain but for the lifetime of the chain all lines of text
undergo the same steps.

We could solve this problem by making the receiving component itself responsible for
determining whether it should process the message or not. This is problematic, though, because
once the message is consumed and the component determines that it does not want the message
it can't just put the message back on the channel for another component to check out. Some
messaging systems allow receivers to inspect message properties without removing the message
from the channel so that it can decide whether to consume the message or not. However, this is
not a general solution and will also tie the consuming component to a specific type of message
because the logic for message selection is now built right into the component. This would reduce
the potential for reuse of that component and eliminate the composability that is the key strength
of the Pipes and Filters model.

Many of these alternatives assume that we can modify the participating components. In most
integration solutions, however, the building blocks ('components') are large applications which in
most cases cannot be modified at all, for example because they are packaged applications or
legacy applications. This makes it uneconomical or even impossible to adjust the message
producing or consuming applications to the needs of the messaging system or other applications.

An advantage of the Pipes and Filters is the composability of the individual components. It allows
us to insert additional steps into the chain without having to change existing components. This
opens up the option of decoupling two filters by inserting another filter in between that
determines what step to execute next.

Insert a special filter, a Message Router, which consumes a Message from one Message Channel
and republishes it to a different Message Channel channel depending on a set of conditions.

The Message Router differs from the most basic notion of Pipes and Filters in that it connects to
multiple output channels. Thanks to the Pipes and Filters architecture the components
surrounding the Message Router are completely unaware of the existence of a Message Router. A
key property of the Message Router is that it does not modify the message contents. It only
concerns itself with the destination of the message.

The key benefit of using a Message Router is that the decision criteria for the destination of a
message are maintained in a single location. If new message types are defined, new processing
components are added, or the routing rules change, we need to change only the Message Router

logic and all other components remain unaffected. Also, since all messages pass through a single
Message Router, incoming messages are guaranteed to be processed one-by-one in the correct
order.

While the intent of a Message Router is to decouple filters, using a Message Router can actually
cause the opposite effect. The Message Router needs to have knowledge of all possible message
destinations in order to send the message to the correct channel. In some situations, the list of
possible destinations may change frequently and turn the Message Router into a maintenance
bottleneck. In those cases, it would be better to let the individual recipients decide which
messages they are interested in. You can accomplish this by using a Publish-Subscribe Channel and
an array of Message Filters. We contrast these two alternatives by calling them predictive routing
and reactive filtering (for more detail see Message Filter).

Because a Message Router requires the insertion of an additional processing step it can degrade
performance. Many message-based systems have to decode the message from one channel before
it can be placed on another channel, which causes computational overhead if the message itself
does not really change. This overhead can turn a Message Router, into a performance bottleneck.
By using multiple routers in parallel or adding additional hardware, this effect can be minimized.
As a result, the message throughput (number of messages processed per time unit) may not be
impacted, but the latency (time for one message to travel through the system) will almost
certainly increase.

Deliberate use of Message Routers can turn the advantage of loose coupling into a disadvantage.
Loosely coupled systems can make it difficult to understand the "big picture" of the solution, i.e.
the overall flow of messages through the system. This is a common problem with messaging
solutions and the use of routers can exacerbate the problem. If everything is loosely coupled to
everything else it becomes impossible to understand which way messages actually flow. This can
complicate testing and debugging and maintenance. A number of tools can help alleviate this
problem. First, we can use the Message History to inspect messages at runtime and see which
components they traversed. Alternatively, we can compile a list of all channels that each
component in the system subscribes or publishes to. With this knowledge we can draw a graph of
all possible message flows across components. Many EAI packages maintain channel
subscription information in a central repository, making this type of static analysis easier.

Message Router Variants

A Message Router can use any number of criteria to determine the output channel for an incoming
message. The most trivial case is a fixed router. In this case, only a single input channel and a
single output channel are defined. The fixed router consumes one message off the input channel
and publishes it to the output channel. Why would we ever use such a brainless router? A fixed
router may be useful to intentionally decouple subsystems. Or we may be relaying messages
between multiple integration solutions. In most cases, a fixed router will be combined with a
Message Translator or a Channel Adapter to transform the message content or send the message
over a different channel type.

Many Message Routers decide the message destination only on properties of the message itself, for
example the message type or the values of specific message fields. We call such a router a
Content-Based Router. This type of router is so common that the Content-Based Router pattern
describes it in more detail.

Other Message Routers decide the message's destination based on environment conditions. We call
these routers Context-Based Routers. Such routers are commonly used to perform load balancing,
test or failover functionality. For example, if a processing component fails, the Context-Based
Router can re-route message to another processing component and thus provide fail-over
capability. Other routers split messages evenly across multiple channels to achieve parallel
processing similar to a load balancer. A Message Channel already provides basic load balancing
capabilities without the use of a Message Router because multiple competing consumers can each
consume messages off the same channel as fast as they can. However, a Message Router can have
additional built-in intelligence to route the messages as opposed to a simple round-robin
implemented by the channel.

Many Message Routers are stateless, i.e. they only look at one message at a time to make the
routing decision. Other routers take the content of previous messages into account when making
a routing decision. For example, we can envision a router that eliminates duplicate messages by
keeping a list of all messages it already received. These routers are stateful.

Most Message Routers contain hard-coded logic for the routing decision. However, some variants
connect to a Control Bus so that the middleware solution can change the decision criteria without
having to make any code changes or interrupting the flow of messages. For example, the Control
Bus can propagate the value of a global variable to all Message Routers in the system. This can be
very useful for testing to allow the messaging system to switch from 'test' to 'production' mode.
The Dynamic Router configures itself dynamically based on control messages from each potential
recipient.

Chapter Introduction to Message Routing introduces further variants of the Message Router.

Example: Commercial EAI Tools

The notion of a Message Router is central to the concept of a Message Broker, implemented in
virtually all commercial EAI tools. These tools accept incoming messages, validate them,
transform them and route them to the correct destination. This architecture alleviates the
participating applications from having to be aware of other applications altogether because the
message broker brokers between the applications. This is a key function in EAI because most
applications to be connected are packaged or legacy applications and the integration has to
happen non-intrusively, i.e. without changing the application code. This requires the middleware
to incorporate all routing logic so the applications do not have to. The Message Broker is the
integration equivalent of a Mediator presented in [GoF].

Example: Simple Router with C# and MSMQ

This code example demonstrates a very simple router that routes an incoming message to one of
two possible output channels.

class SimpleRouter

{

 protected MessageQueue inQueue;

 protected MessageQueue outQueue1;

 protected MessageQueue outQueue2;

 public SimpleRouter(MessageQueue inQueue, MessageQueue outQueue1, MessageQueue

outQueue2)

 {

 this.inQueue = inQueue;

 this.outQueue1 = outQueue1;

 this.outQueue2 = outQueue2;

 inQueue.ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);

 inQueue.BeginReceive();

 }

 private void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)

 {

 MessageQueue mq = (MessageQueue)source;

 Message message = mq.EndReceive(asyncResult.AsyncResult);

 if (IsConditionFulfilled())

 outQueue1.Send(message);

 else

 outQueue2.Send(message);

 mq.BeginReceive();

 }

 protected bool toggle = false;

 protected bool IsConditionFulfilled ()

 {

 toggle = !toggle;

 return toggle;

 }

}

The code is relatively straightforward. The example implements an event-driven consumer of
messages using C# delegates. The constructor registers the method OnMessage as the handler for
messages arriving on the inQueue. This causes the .NET framework to invoke the method
OnMessage for every message that arrives on the inQueue. OnMessage figures out where to route the
message by calling the method IsConditionFulfilled. In this trivial example
IsConditionFulfilled simply toggles between the two channels, dividing the messages evenly
between outQueue1 and outQueue2. In order to keep the code to a minimum, this simple router is
not transactional, i.e. if the router crashes after it consumed a message from the input channel
and before it published it to the output channel, we would lose a message. Later chapters will
explain how to make endpoints transactional (see Transactional Client).

Related patterns: Channel Adapter, Content-Based Router, Control Bus, Datatype Channel, Dynamic
Router, Message Filter, Message, Message Channel, Message History, Introduction to Message Routing,
Message Translator, Pipes and Filters, Publish-Subscribe Channel, Transactional Client

Message Translator

The previous patterns describe how to construct messages and how to route them to the correct
destination. In many cases, enterprise integration solutions route messages between existing
applications such as legacy systems, packaged applications, homegrown custom applications, or
applications operated by external partners. Each of these applications is usually built around a
proprietary data model. Each application may have a slightly different notion of the Customer
entity , the attributes that define a Customer and which other entities a Customer is related to. For
example, the accounting system may be more interested in the customer's tax payer ID numbers
while the customer-relationship management (CRM) system stores phone numbers and
addresses. The application’s underlying data model usually drives the design of the physical
database schema, an interface file format or a programming interface (API) -- those entities that
an integration solution has to interface with. As a result, the applications expect to receive
messages that mimic the application's internal data format.

In addition to the proprietary data models and data formats incorporated in the various
applications, integration solutions often times interact with standardized data formats that seek
to be independent from specific applications. There are a number of consortia and standards
bodies that define these protocols, such as RosettaNet, ebXML, OAGIS and many other, industry
specific consortia. In many cases, the integration solution needs to be able to communicate with
external parties using the ‘official’ data formats while the internal systems are based on
proprietary formats.

How can systems using different data formats communicate with each other using messaging?

We could avoid having to transform messages if we could modify all applications to use a
common data format. This turns out to be difficult for a number of reasons (see Shared Database).
First, changing an application’s data format is risky, difficult, and requires a lot of changes to
inherent business functionality. For most legacy applications, data format changes are simply not

economically feasible. We may all remember the effort related to the Y2K retrofits where the
scope of the change was limited to the size of a single field!

Also, while we may get multiple applications to use the same data field names and maybe even
the same data types, the physical representation may still be quite different. One application may
use XML documents, while the other application uses COBOL copybooks.

Furthermore, if we adjust the data format of one application to match that of another application
we are tying the two applications more tightly to each other. One of the key architectural
principles in enterprise integration is loose coupling between applications (see Canonical Data
Model). Modifying one application to match another application's data format would violate this
principle because it makes two applications directly dependent on each other's internal
representation. This eliminates the possibility of replacing or changing one application without
affecting the other application, a scenario that is fairly common in enterprise integration.

We could incorporate the data format translation directly into the Message Endpoint. This way, all
applications would publish and consume messages in a common format as opposed to the
application internal data format. However, this approach requires access to the endpoint code,
which is usually not the case for packaged applications. In addition, hard-coding the format
translation to the endpoint would reduce the opportunities for code reuse.

Use a special filter, a Message Translator, between other filters or applications to translate one
data format into another.

The Message Translator is the messaging equivalent of the Adapter pattern described in [GoF]. An
adapter converts the interface of a component into a another interface so it can be used in a
different context.

Levels of Transformation

Message translation may need to occur at a number of different levels. For example, data
elements may share the same name and data types, but may be used in different representations
(e.g. XML file vs. comma-separated values vs. fixed-length fields). Or, all data elements may be
represented in XML format, but use different tag names. To summarize the different kinds of
translation, we can divide it into multiple layers (loosely borrowing from the OSI Reference
Model model):

Layer Deals With Transformation Needs (Example) Tools / Techniques

Data Structures

(Application

Layer)

Entities, associations, cardinality Condense many-to-many relationship

into aggregation.

Structural Mapping

Patterns

Custom code

Data Types Field names, data types, value

domains, constraints, code values

Convert zip code from numeric to

string.

Concatenate first name and last name

fields to single name field.

Replace US state name with two

character code.

EAI visual

transformation editors

XSL

Database lookups

Custom code

Data

Representation

Data formats (XML, name-value

pairs, fixed-length data fields etc.,

EAI vendor formats)

Character sets (ASCII, UniCode,

EBCDIC)

Encryption / compression

Parse data representation and render

in a different format. Decrypt/

encrypt as necessary.

XML Parsers, EAI

parser / renderer tools

Custom APIs

Transport Communications Protocols:TCP/IP

sockets, http, SOAP, JMS, TIBCO

RendezVous

Move data across protocols without

affecting message content.

Channel Adapter

EAI adapters

The Transport Layer at the bottom of the “stack” provides data transfer between the different
systems. It is responsible for complete and reliable data transfer across different network
segments and deals with lost data packets and other network errors. Some EAI vendors provide
their own transport protocols (e.g. TIBCO RendezVous) while other integration technologies
leverage TCP/IP protocols (e.g. SOAP). Translation between different transport layers can be
provided by the Channel Adapter pattern.

The Data Representation layer is also referred to as the “syntax layer”. This layer defines the
representation of data that is transported. This translation is necessary because the Transport
Layer can only transport character or byte streams. This means that complex data structures have
to be converted into a character string. Common formats include XML, fixed-length fields (e.g.
EDI records) or proprietary formats. In many cases, data is also compressed or encrypted, carries
check digits or digital certificates. In order to interface systems with different data
representations, data may have to be decrypted, uncompressed and parsed, then the new data
format rendered, and possibly compressed and encrypted as well.

The Data Types layer defines the application data types that the application (domain) model is
based on. Here we deal with decisions whether date fields are represented as strings or as native
date structures, whether dates carry a time-of-day component, which time zone they are based on,
etc. We may also consider whether the field Postal Code denotes only a US ZIP code or can contain
Canadian postal codes. In case of a US ZIP code, do we include a ZIP+4; is it mandatory? Is it
stored in one field or two? Many of these questions are usually addressed in so-called Data
Dictionaries. The issues related to Data Types go beyond whether a field is of type string or integer.

Consider sales data that is organized by region. The application used by one department may
divide the country into 4 regions: Western, Central, Southern and Eastern, identified by the
letters ‘W”, ‘C’, ‘S’ and ‘E’. Another department may differentiate the Pacific Region from the
Mountain Region and distinguishes the Northeast from the Southeast. Each region is identifies by
a unique two-digit number. What number does the letter ‘E’ correspond to?

The Data Structures describes the data at the level of the application domain model. It is therefore
also referred to as the Application Layer. This layer defines the logical entities that the
application deals with, such as Customer, Address or Account. It also defines the relationships
between these entities: Can one customer have multiple accounts? Can a customer have multiple
addresses? Can customers share and address? Can multiple customers share an account? Is the
address part of the account or the customer? This is the domain of entity-relationship diagrams
and class diagrams.

Levels of Decoupling

Many of the design trade-offs in integration are driven by the need to decouple components or
applications. Decoupling is an essential tool to enable the management of change. Integration
typically connects existing applications and has to accommodate changes to these applications.
Message Channels decouple applications from having to know each other's location. A Message
Router can even decouple applications from having to agree on a common Message Router.
However, this form of decoupling only achieves limited independence between applications if
they depend on each other's data formats. A Message Translator can help remove this level of
dependency.

Chaining Transformations

Many business scenarios require transformations at more than one layer. For example, let's
assume an EDI 850 Purchase Order record represented as a fixed-format file has to be translated
to an XML document sent over http to the order management system which uses a different
definition of the Order object. The required transformation spans all four levels: the transport
changes from a file to HTTP, the data format changes from fixed-format to XML, data types and
data formats have to be converted to comply with the Order object defined by the order
management system. The beauty of a layered model is that we can treat one layer without regard
to the lower layers and therefore can choose to work at different levels of abstraction.
Correspondingly, we can talk about transformation at each layer of abstraction (see picture).

Chaining multiple Message Translator units using Pipes and Filters results in the following
architecture (see picture). Creating one Message Translator for each layer allows us to reuse these
components in other scenarios. For example, the Channel Adapter and the EDI-to-XML Message
Translator can be generic enough to deal with any incoming EDI document.

This approach also makes individual layers interchangeable. You could use the same structural
transformation mechanisms, but instead of converting the data representation into a fixed format
you could convert it into a comma-separated file by swapping out the data representation
transformation.

There are many specializations and variations of the Message Translator pattern. A Content
Enricher augments the information inside a message while the Content Filter removes information.
The Claim Check removes information but stores it for later retrieval. The Normalizer can convert a
number of different message formats into a consistent format. Lastly, the Canonical Data Model
shows how to leverage multiple Message Translators to achieve data format decoupling. Inside
each of those patterns, complex structural transformations can occur (e.g. mapping a
many-to-many relationship into a one-to-one relationship). The Messaging Bridge performs a
translation of the transport layer by connecting multiple messaging systems to each other.

Example: Structural Transformation with XSL

Transformation is such a common need that the W3C defined a standard language for the
transformation of XML documents, the Extensible Stylesheet Language (XSL). Part of XSL is the
XSL Transformation (XSLT) language, a rules-based language that translates one XML document
into a different format. Since this is a book on integration and not on XSLT, we just show a simple
example (for all the gory detail see the spec [XSLT 1.0] or to learn by reviewing code examples

see [Tennison]). In order to keep things simple, we explain the required transformation by
showing example XML documents as opposed to XML schemas.

For example, let's assume we have an incoming XML document and need to pass it to the
accounting system. If both systems use XML, the Data Representation layer is identical and we
need to cover any differences in field names, data types and structure. Let's assume the incoming
document looks like this:

<data>

 <customer>

 <firstname>Joe</firstname>

 <lastname>Doe</lastname>

 <address type="primary">

 <ref id="55355"/>

 </address>

 <address type="secondary">

 <ref id="77889"/>

 </address>

 </customer>

 <address id="55355">

 <street>123 Main</street>

 <city>San Francisco</city>

 <state>CA</state>

 <postalcode>94123</postalcode>

 <country>USA</country>

 <phone type="cell">

 <area>415</area>

 <prefix>555</prefix>

 <number>1234</number>

 </phone>

 <phone type="home">

 <area>415</area>

 <prefix>555</prefix>

 <number>5678</number>

 </phone>

 </address>

 <address id="77889">

 <company>ThoughtWorks</company>

 <street>410 Townsend</street>

 <city>San Francisco</city>

 <state>CA</state>

 <postalcode>94107</postalcode>

 <country>USA</country>

 </address>

</data>

This XML document contains customer data. Each customer can be associated with multiple
addresses, each of which can contain multiple phone numbers. The XML represents addresses as
independent entities so that multiple customers could share an address.

Let's assume the accounting system needs the following representation. If you think that the
German tag names are bit far fetched, keep in mind that one of the most popular pieces of
enterprise software is famous for its German field names!

<Kunde>

 <Name>Joe Doe</Name>

 <Adresse>

 <Strasse>123 Main</Strasse>

 <Ort>San Francisco</Ort>

 <Telefon>415-555-1234</Telefon>

 </Adresse>

</Kunde>

The resulting document has a much simpler structure. Tag names are different and some fields
are merged into a single field. Since there is room for only one address and phone numbers, we
need to pick one from the original document based on business rules. The following XSLT
program transforms the original document into the desired format. It does so by matching
elements of the incoming document and translating them into the desired document format.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="yes"/>

 <xsl:key name="addrlookup" match="/data/address" use="@id"/>

 <xsl:template match="data">

 <xsl:apply-templates select="customer"/>

 </xsl:template>

 <xsl:template match="customer">

 <Kunde>

 <Name>

 <xsl:value-of select="concat(firstname, ' ', lastname)"/>

 </Name>

 <Adresse>

 <xsl:variable name="id" select="./address[@type='primary']/ref/@id"/>

 <xsl:call-template name="getaddr">

 <xsl:with-param name="addr" select="key('addrlookup', $id)"/>

 </xsl:call-template>

 </Adresse>

 </Kunde>

 </xsl:template>

 <xsl:template name="getaddr">

 <xsl:param name="addr"/>

 <Strasse>

 <xsl:value-of select="$addr/street"/>

 </Strasse>

 <Ort>

 <xsl:value-of select="$addr/city"/>

 </Ort>

 <Telefon>

 <xsl:choose>

 <xsl:when test="$addr/phone[@type='cell']">

 <xsl:apply-templates select="$addr/phone[@type='cell']"

mode="getphone"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:apply-templates select="$addr/phone[@type='home']"

mode="getphone"/>

 </xsl:otherwise>

 </xsl:choose>

 </Telefon>

 </xsl:template>

 <xsl:template match="phone" mode="getphone">

 <xsl:value-of select="concat(area, '-', prefix, '-', number)"/>

 </xsl:template>

 <xsl:template match="*"/>

</xsl:stylesheet>

XSL is based on pattern matching and can be a bit hairy to read if you are used to procedural
programming like most of us. In a nutshell, the <xsl:template> are called whenever an element in
the incoming XML document matches the expression specified in the match attribute. For
example, the line

<xsl:template match="customer">

causes the subsequent lines to be executed for each <customer> element in the source document.
The next statements concatenate first and last name and output it inside the <Name> element.
Getting the address is a little trickier. The XSL code looks up the correct instance of the <address>
element and calls the "subroutine" getaddr. getaddr extracts the address and phone number from
the original <address> element. It uses the cell cell phone number if one is present and the home
phone number otherwise.

Example: Visual Transformation Tools

If you find XSL programming a bit cryptic, you are in good company. Therefore, most integration
vendors provide visual transformation editors that displays the structure of the two document
formats on the left-hand side and right-hand side of the screen, respectively. The users can then
drag and drop between the two sides to associate elements between the formats. This can be a lot

simpler than coding XSL. Some vendors specialize entirely in transformation tools, for example
Contivo, Inc..

The following screen shots shows the Microsoft BizTalk Mapper editor that is integrated into
Visual Studio. The diagram shows the mapping between individual elements more clearly than
the XSL script. On the other hand, some of the details (e.g., how the address is chosen) are hidden
underneath the functoid icons.

Creating Transformations the Drag-Drop Style

Being able to drag and drop transformations shortens the learning curve for developing a
Message Translator dramatically.As so often though, visual tools can also become a liability when
it comes to debugging or when you need to create complex solutions. Therefore, many tools let
you switch back and forth between XSL and the visual tool.

Related patterns: Canonical Data Model, Channel Adapter, Content Filter, Content Enricher, Message
Channel, Message Endpoint, Message Router, Message Translator, Messaging Bridge, Normalizer, Pipes
and Filters, Shared Database, Claim Check

Message Endpoint

Applications are communicating by sending Messages to each other via Message Channels.

How does an application connect to a messaging channel to send and receive messages?

The application and the messaging system are two separate sets of software. The application
provides functionally for some type of user, whereas the messaging system manages messaging
channels for transmitting messages for communication. Even if the messaging system is
incorporated as a fundamental part of the application, it is still a separate, specialized provider of
functionality much like a database management system or a web server. Because the application
and the messaging system are separate, they must have a way to connect and work together.

Applications disconnected from a message channel

A messaging system is a type of server, capable of taking requests and responding to them. Like
a database accepting and retrieving data, a messaging server accepts and delivers messages. A
messaging system is a messaging server.

A server needs clients, and an application that uses messaging is a client of the messaging server.
But applications do not necessarily know how to be messaging clients, any more than they know
how to be database clients. The messaging server, like a database server, has a client API that the
application can use to interact with the server. The API is not application-specific; it is
domain-specific, where messaging is the domain.

The application must contain a set of code that connects and unites the messaging domain with
the application to allow the application to perform messaging.

Connect an application to a messaging channel using a Message Endpoint, a client of the
messaging system that the application can then use to send or receive messages.

Message Endpoint code is custom to both the application and the messaging system’s client API.
The rest of the application knows little about message formats, messaging channels, or any of the
other details of communicating with other applications via messaging. It just knows that it has a
request or piece of data to send to another application, or is expecting those from another
application. It is the messaging endpoint code that takes that command or data, makes it into a
message, and sends it on a particular messaging channel. It is the endpoint that receives a
message, extracts the contents, and gives them to the application in a meaningful way.

The Message Endpoint encapsulates the messaging system from the rest of the application, and
customizes a general messaging API for a specific application and task. If an application using a
particular messaging API were to switch to another, developers would have to rewrite the
message endpoint code, but the rest of the application should remain the same. If a new version
of a messaging system changes the messaging API, this should only affect the message endpoint
code. If the application decides to communicate with others via some means other than
messaging, developers should ideally be able to rewrite the message endpoint code as something
else, but leave the rest of the application unchanged.

A Message Endpoint can be used to send messages or receive them, but one instance does not do
both. An endpoint is channel-specific, so a single application would use multiple endpoints to
interface with multiple channels. An application may use more than one endpoint to interface to
a single channel, usually to support multiple concurrent threads.

A Message Endpoint is a specialized Channel Adapter, one that has been custom developed for and
integrated into its application.

A Message Endpoint should be designed as a Messaging Gateway to encapsulate the messaging
code and hide the message system from the rest of the application. It can employ a Messaging
Mapper to transfer data between domain objects and messages. It can be structured as a Service
Activator to provide asynchronous message access to a synchronous service or function call. An
endpoint can explicitly control transactions with the messaging system as a Transactional Client.

Sending messages is pretty easy, so many endpoint patterns concern different approaches for
receiving messages. A message receiver can be a Polling Consumer or an Event-Driven Consumer.
Multiple consumers can receive messages from the same channel either as Competing Consumers
or via a Message Dispatcher. It can decide which messages to consume or ignore using a Selective
Consumer . It can use a Durable Subscriber to make sure a subscriber does not miss messages
published while the endpoint is disconnected. And the consumer can be an Idempotent Receiver
that correctly detects and handles duplicate messages.

Example: JMS Producer and Consumer

In JMS, the two main endpoint types are MessageProducer, for sending messages, and
MessageConsumer, for receiving messages. A Message Endpoint uses an instance of one of these
types to either send or receive messages to/from a particular channel.

Example: .NET MessageQueue

In .NET, the main endpoint class is the same as the main Message Channel class, MessageQueue. A
Message Endpoint uses an instance of MessageQueue to send or receive messages to/from a
particular channel.

Related patterns: Channel Adapter, Competing Consumers, Durable Subscriber, Event-Driven
Consumer, Idempotent Receiver, Message, Message Channel, Message Dispatcher, Selective Consumer,
Service Activator, Messaging Gateway, Messaging Mapper, Polling Consumer, Transactional Client

4．Messaging Channels

Introduction

In Introduction to Messaging Systems, we discussed Message Channel. When two applications wish
to exchange data, they do so by sending the data through a channel that connects the two. The
application sending the data may not know which application will receive the data, but by
selecting a particular channel to send the data on, the sender knows that the receiver will be one
that is looking for that sort of data by looking for it on that channel. In this way, the applications
that produce shared data have a way to communicate with those that wish to consume it.

Message Channel Themes

Deciding to use a Message Channel is the simple part; if an application has data to transmit or data
it wishes to receive, it will have to use a channel. The challenge is knowing what channels your
applications will need and what to use them for.

Fixed set of channels — One theme in this chapter is that the set of Message Channels available to
an application tends to be static. When designing an application, a developer has to know where
to put what types of data to share that data with other applications, and likewise where to look
for what types of data coming from other applications. These paths of communication cannot be
dynamically created and discovered at runtime; they need to be agreed upon at design time so
that the application knows where its data is coming from and where the data is going to. (While
it is true that most channels must be staticly defined, there are exceptions to this theme, cases
where dynamic channels are practical and useful. One exception is the reply channel in
Request-Reply. The requestor can create or obtain a new channel the replier knows nothing about,
specify it as the Return Address of a request message, and then the replier can make use of it.
Another exception is messaging system implementations that support hierarchical channels. A
receiver can subscribe to a parent in the hierarchy, then a sender can publish to a new child
channel the receiver knows nothing about, and the subscriber will still receive the message. These
relatively unusual cases notwithstanding, channels are usually defined at deployment-time and
applications are designed around a known set of channels.)

Determining the set of channels — A related issue is: Who decides what Message Channels are
available, the messaging system or the applications? That is to say: Does the messaging system
define certain channels and require the applications to make due with those? Or do the
applications determine what channels they need and require the messaging system to provide
them? There is no simple answer; designing the needed set of channels is iterative. First the
applications determine the channels the messaging system will need to provide. Subsequent
applications will try to design their communication around the channels that are available, but
when this is not practical, they will require that additional channels be added. When a set of

applications already use a certain set of channels, and new applications wish to join in, they too
will use the existing set of channels. When existing applications add new functionality, they may
require new channels.

Unidirectional channels — Another common source of confusion is whether a Message Channel is
unidirectional or bidirectional. Technically, it’s neither; a channel is more like a bucket that some
applications add data to and other applications take data from (albeit a bucket that is distributed
across multiple computers in some coordinated fashion). But because the data is in messages that
travel from one application to another, that gives the channel direction, making it unidirectional.
If a channel were bidirectional, that would mean that an application would both send messages
to and receive messages from the same channel, which—while technically possible—makes little
sense because the application would tend to keep consuming its own messages, the messages it’s
supposed to be sending to other applications. So for all practical purposes, channels are
unidirectional. As a consequence, for two applications to have a two-way conversation, they will
need two channels, one in each direction (see Request-Reply in the next chapter).

Message Channel Decisions

Now that we understand what Message Channels are, let’s consider the decisions involved in
using them:

One-to-one or one-to-many — When your application shares a piece of data, do you want to
share it with just one other application or with any other application that is interested? To send
the data to a single application, use a Point-to-Point Channel. This does not guarantee that every
piece of data sent on that channel will necessarily go to the same receiver, because the channel
might have multiple receivers; but it does ensure that any one piece of data will only be received
by one of the applications. If you want all of the receiver applications to be able to receive the
data, use a Publish-Subscribe Channel. When you send a piece of data this way, the channel
effectively copies the data for each of the receivers.

What type of data — Any data in any computer memory has to conform to some sort of type: a
known format or expected structure with an agreed upon meaning. Otherwise, all data would
just be a bunch of bytes and there would be no way to make any sense of it. Messaging systems
work much the same way; the message contents must conform to some type so that the receiver
understands the data’s structure. Datatype Channel is the principle that all of the data on a channel
has to be of the same type. This is the main reason why messaging systems need lots of channels;
if the data could be of any type, the messaging system would only need one channel (in each
direction) between any two applications.

Invalid and dead messages — The message system can ensure that a message is delivered
properly, but it cannot guarantee that the receiver will know what to do with it. The receiver has
expectations about the data’s type and meaning; when it receives a message that doesn’t meet
these expectations, there’s not much it can do. What it can do, though, is put the strange message
on a specially designated Invalid Message Channel, in hopes that some utility monitoring the

channel will pick up the message and figure out what to do with it. Many messaging systems
have a similar built-in feature, a Dead Letter Channel for messages which are successfully sent but
ultimately cannot be successfully delivered. Again, hopefully some utility monitoring the channel
will know what to do with the messages that could not be delivered.

Crash proof — If the messaging system crashes or is shut down for maintence, what happens to
its messages? When it is back up and running, will its messages still be in its channels? By default,
no; channels store their messages in memory. However, Guaranteed Delivery makes channels
persistent so that their messages are stored on disk. This hurts performance but makes messaging
more reliable, even when the messaging system isn’t.

Non-messaging clients — What if an application cannot connect to a messaging system but still
wants to participate in messaging? Normally it would be out of luck; but if the messaging system
can connect to the application somehow—through its user interface, its business services API, its
database, or through a network connection such as TCP/IP or HTTP—then a Channel Adapter on
the messaging system can be used to connect a channel (or set of channels) to the application
without having to modify the application and perhaps without having to have a messaging client
running on the same machine as the application. Sometimes the "non-messaging client" really is a
messaging client, just for a different messaging system. In that case, an application that is a client
on both messaging systems can build a Messaging Bridge between the two, effectively connecting
them into one composite messaging system.

Communications backbone — As more and more of an enterprise’s applications connect to the
messaging system and make their functionality available through messaging, the messaging
system becomes a centeralized point of one-stop-shopping for functionality in the enterprise. A
new application simply needs to know which channels to use to request functionality and which
others to listen on for the results. The messaging system itself essentially becomes a Message Bus,
a backbone providing access to all of the enterprise’s various and ever-changing applications and
functionality. You can achieve this integration nirvana more quickly and easily by specifically
designing for it from the beginning.

So as you can see, getting applications set up for Messaging involves more than just connecting
them to the messaging system so that they can send messages. The messages must have Message
Channels to transmit on. Slapping in some channels doesn’t get the job done either. They have to
be designed with a purpose, based on the data type being shared, the sort of application making
the data available, and the sort of application receiving the data. This chapter will explain the
decisions that go into designing these channels.

To help illustrate the patterns, each one has an example from a ficticious, simplified "stock
trading" domain. While none of these examples should be used as the basis for implementing a
real trading system, they do serve as quick and specific examples of how the patterns can be
used.

Point-to-Point Channel

An application is using Messaging to make remote procedure calls (RPC’s) or transfer documents.

How can the caller be sure that exactly one receiver will receive the document or perform the
call?

One advantage of an RPC is that it’s invoked on a single remote process, so either that receiver
performs the procedure or it does not (and an exception occurs). And since the receiver was only
called once, it only performs the procedure once. But with messaging, once a call is packaged as a
Message and placed on a Message Channel, potentially many receivers could see it on the channel
and decide to perform the procedure.

The messaging system could prevent more than one receiver from monitoring a single channel,
but this would unnecessarily limit callers that wish to transmit data to multiple receivers. All of
the receivers on a channel could coordinate to ensure that only one of them actually performs the
procedure, but that would be complex, create a lot of communications overhead, and generally
increase the coupling between otherwise independent receivers. Multiple receivers on a single
channel may be desirable so that multiple messages can be consumed concurrently, but any one
receiver should consume any single message.

Send the message on a Point-to-Point Channel, which ensures that only one receiver will
receive a particular message.

A Point-to-Point Channel ensures that only one receiver consumes any given message. If the
channel has multiple receivers, only one of them can successfully consume a particular message.
If multiple receivers try to consume a single message, the channel ensures that only one of them
succeeds, so the receivers do not have to coordinate with each other. The channel can still have
multiple receivers to consume multiple messages concurrently, but only a single receiver
consumes any one message.

When a Point-to-Point Channel only has one consumer, the fact that a message only gets consumed
once is not surprising. When the channel has multiple consumers, then they become Competing
Consumers, and the channel ensures that only one of the consumers receives each message. The
effort to consume messages is highly scalable because that work can be load-balanced across
multiple consumers running in multiple applications on multiple computers.

Whereas a Point-to-Point Channel sends a message to only one of the available receivers, to send a
message to all available receivers, use a Publish-Subscribe Channel. To implement RPC's using
messaging, use Request-Reply with a pair of Point-to-Point Channels. The call is a Command Message
whereas the reply is a Document Message.

Example: Stock Trading

In a stock trading system, the request to make a particular trade is a message that should be
consumed and performed by exactly one receiver, so the message should be placed on a
Point-to-Point Channel.

Example: JMS Queue

In JMS, a point-to-point channel implements the Queue interface. The sender uses a QueueSender to
send messages; each receiver uses its own QueueReceiver to receive messages. [JMS11, pp.75-78],
[Hapner, p.18]

An application uses a QueueSender to send a message like this:

Queue queue = // obtain the queue via JNDI

QueueConnectionFactory factory = // obtain the connection factory via JNDI

QueueConnection connection = factory.createQueueConnection();

QueueSession session = connection.createQueueSession(true, Session.AUTO_ACKNOWLEDGE);

QueueSender sender = session.createSender(queue);

Message message = session.createTextMessage("The contents of the message.");

sender.send(message);

An application uses a QueueReceiver to receive a message like this:

Queue queue = // obtain the queue via JNDI

QueueConnectionFactory factory = // obtain the connection factory via JNDI

QueueConnection connection = factory.createQueueConnection();

QueueSession session = connection.createQueueSession(true, Session.AUTO_ACKNOWLEDGE);

QueueReceiver receiver = session.createReceiver(queue);

TextMessage message = (TextMessage) receiver.receive();

String contents = message.getText();

Note: JMS 1.1 unifies the client API’s for the point-to-point and publish/subscribe domains, so
the code shown here can be simplified to use Destination, ConnectionFactory, Connection,
Session, MessageProducer, and MessageConsumer, rather than their Queue-specific counterparts.

Example: .NET MessageQueue

In .NET, the MessageQueue class implements a point-to-point channel. [SysMsg] MSMQ, which
implements .NET messaging, only supported point-to-point messaging prior to version 3.0, so
point-to-point is what .NET supports. Whereas JMS seperates the responsibilities of the
connection factory, connection, session, sender, and queue, a MessageQueue does it all.

Send a message on a MessageQueue like this:

MessageQueue queue = new MessageQueue("MyQueue");

queue.Send("The contents of the message.");

Receive a message on a MessageQueue like this:

MessageQueue queue = new MessageQueue("MyQueue");

Message message = queue.Receive();

String contents = (String) message.Body();

Related patterns: Command Message, Competing Consumers, Document Message, Message, Message
Channel, Messaging, Publish-Subscribe Channel, Request-Reply

Publish-Subscribe Channel

An application is using Messaging to announce events.

How can the sender broadcast an event to all interested receivers?

Luckily, there are well-established patterns for implementing broadcasting. The Observer pattern
[GoF] describes the need to decouple observers from their subject so that the subject can easily
provide event notification to all interested observers no matter how many observers there are
(even none). The Publisher-Subscriber pattern [POSA] expands upon Observer by adding the
notion of an event channel for communicating event notifications.

That’s the theory, but how does it work with messaging? The event can be packaged as a Message
so that messaging will reliably communicate the event to the observers (subscribers). Then the
event channel is a Message Channel. But how will a messaging channel properly communicate the
event to all of the subscribers?

Each subscriber needs to be notified of a particular event once, but should not be notified
repeatedly of the same event. The event cannot be considered consumed until all of the
subscribers have been notified. But once all of the subscribers have been notified, the event can be
considered consumed and should disappear from the channel. Yet having the subscribers
coordinate to determine when a message is consumed violates the decoupling of the Observer

pattern. Concurrent consumers should not be considered to compete, but should be able to share
the event message.

Send the event on a Publish-Subscribe Channel, which delivers a copy of a particular event to
each receiver.

A Publish-Subscribe Channel works like this: It has one input channel that splits into multiple
output channels, one for each subscriber. When an event is published into the channel, the
Publish-Subscribe Channel delivers a copy of the message to each of the output channels. Each
output channel has only one subscriber, which is only allowed to consume a message once. In
this way, each subscriber only gets the message once and consumed copies disappear from their
channels.

A Publish-Subscribe Channel can be a useful debugging tool. Even though a message is destined to
only a single receiver, using a Publish-Subscribe Channel allows you to eavesdrop on a message
channel without disturbing the existing message flow. Monitoring all traffic on a channel can be
tremendously helpful when debugging messaging applications. It can also save you from
inserting a ton of print statements into each application that participates in the messaging
solution. Creating a program that listens for messages on all active channels and logs them to a
file can realize many of the same benefits that a Message Store brings.

The ability to eavesdrop on a Publish-Subscribe Channel can also turn into a disadvantage. If your
messaging solution transmits payroll data between the payroll system and the accounting system,
you may not want to allow anyone to write a simple program to listen to the message traffic.
Point-to-Point Channels alleviate the problem to some extent because the eavesdropper would
consume the messages and the situation would be detected very quickly. However, some
implementations of message queues implementing peek functions that let consumers look at
messages inside a queue without consuming any of the messages. As a result, subscribing to a

Message Channel is an operation that should be restricted by security policies. Many (but not all)
commercial messaging implementations implement such restrictions. In addition, creating a
monitoring tool that logs active subscribers to Message Channels can be a useful systems
management tool.

For more details on how to implement Observer using messaging, see JMS Publish/Subscribe
Example.

Wildcard Subscribers

Many messaging systems allow subscribers to Publish-Subscribe Channels to specify special wild card characters. This is a

powerful technique to allow subscribers to subscribe to multiple channels at once. For example, if an application publishes

messages to the channels MyCorp/Prod/OrderProcessing/NewOrders and MyCorp/Prod/OrderProcessing/CancelledOrders an

application could subscribe to MyCorp/Prod/OrderProcessing/* and receive all messages related to order processing. Another

application could subscribe to MyCorp/Dev/** to receive all messages sent by all applications in the development environment.

Only subscribers are allowed to use wildcards, publishers are always required to publish a message to a specific channel. The

specific capabilities and syntax for wildcard subscribers vary between the different messaging vendors.

An Event Message is usually sent on a Publish-Subscribe Channel because multiple dependents are
often interested in an event. A subscriber can be durable or non-durable—see Durable Subscriber.
If notifications should be acknowledged by the subscribers, use Request-Reply, where the
notification is the request and the acknowledgement is the reply.

Example: Stock Trading

In a stock trading system, many systems may need to be notified of the completion of a trade, so
make them all subscribers of a Publish-Subscribe Channel that publishes trade completions.

Example: JMS Topic

In JMS, a Publish-Subscribe Channel implements the Topic interface. The sender uses a
TopicPublisher to send messages; each receiver uses its own TopicSubscriber to receive messages.
[JMS11, pp.79-85], [Hapner, p.18]

An application uses a TopicPublisher to send a message like this:

Topic topic = // obtain the topic via JNDI

TopicConnectionFactory factory = // obtain the connection factory via JNDI

TopicConnection connection = factory.createTopicConnection();

TopicSession session = connection.createTopicSession(true, Session.AUTO_ACKNOWLEDGE);

TopicPublisher publisher = session.createPublisher(topic);

Message message = session.createTextMessage("The contents of the message.");

publisher.publish(message);

An application uses a TopicSubscriber to receive a message like this:

Topic topic = // obtain the topic via JNDI

TopicConnectionFactory factory = // obtain the connection factory via JNDI

TopicConnection connection = factory.createTopicConnection();

TopicSession session = connection.createTopicSession(true, Session.AUTO_ACKNOWLEDGE);

TopicSubscriber subscriber = session.createSubscriber(topic);

TextMessage message = (TextMessage) subscriber.receive();

String contents = message.getText();

Note: JMS 1.1 unifies the client API’s for the point-to-point and publish/subscribe domains, so
the code shown here can be simplified to use Destination, ConnectionFactory, Connection,
Session, MessageProducer, and MessageConsumer, rather than their Topic-specific counterparts.

Example: MSMQ One-to-Many Messaging

A new feature in MSMQ 3.0 [MSMQ01] is a one-to-many messaging model, which has two different
approaches:

1. Real-Time Messaging Multicast – This most closely matches publish-subscribe, but its implementation is
entirely dependent on IP multicasting via the Pragmatic General Multicast (PGM) protocol.

2. Distribution Lists and Multiple-Element Format Names – A Distribution List enables the sender to
explicitly send a message to a list of receivers (but this violates the spirit of the Observer pattern). A

Multiple-Element Format Name is a symbolic channel specifier that dynamically maps to multiple real channels,

which is more the spirit of the publish-subscribe pattern but still forces the sender to choose between real and

not-so-real channels.

The .NET CLR does not provide direct support for using the one-to-many messaging model.
However, this functionality can be accessed through the COM interface [MDMSG], which can be
embedded in .NET code.

Related patterns: Durable Subscriber, Event Message, Message, Message Channel, Message Store,
Messaging, JMS Publish/Subscribe Example, Point-to-Point Channel, Request-Reply

Datatype Channel

An application is using Messaging to transfer different types of data, such as different types of
documents.

How can the application send a data item such that the receiver will know how to process it?

All messages are just instances of the same message type, as defined by the messaging system,
and the contents of any message are ultimately just a byte array. While this simple structure--a
bundle of bytes--is specific enough for a messaging system to be able to transmit a message, it is
not specific enough for a receiver to be able to process a message’s contents.

A receiver must know the message content’s data structure and data format. The structure could
be character array, byte array, serialized object, XML document, etc. The format could be the
record structure of the bytes or characters, the class of the serialized object, the DTD of the XML
document, etc. All of this knowledge is loosely referred to as the message’s type, meaning the
structure and format of the message’s contents.

The receiver must know what type of messages it’s receiving, or it doesn’t know how to process
them. For example, a sender may wish to send different objects such as purchase orders, price
quotes, and queries. Yet a receiver will probably take different steps to process each of those, so it
has to know which is which. If the sender simply sends all of these to the receiver via a message
channel, the receiver will not know how to process each one.

Mixed Data Types

The sender knows what message type it’s sending, so how can this be communicated to the
receiver? The sender could put a flag in the message’s header (see Format Indicator), but then the
receiver will need a case statement. The sender could wrap the data in a Command Message with a
different command for each type of data, but that presumes to tell the receiver what to do with
the data when all that the message is trying to do is transmit the data to the receiver.

A similar problem that is completely separate from messaging occurs using non-array collections:
collections can be heterogeneous (each item can be of any object type), but as a practical matter
collections need to be homogeneous (each item should be of the same object type, meaning that
they all implement the same abstract class or interface). Homogeneous collections are much more
useful because an iterator on the collection knows what type each item will be and can
manipulate each item using the methods that type understands.

The same principle applies to messaging because in this context, a channel is like a collection and
a receiver is like an iterator. Although a particular channel doesn’t require that all of its messages
be of the same type, they ought to be so that a receiver on that channel knows what type of
message it’s receiving.

Use a separate Datatype Channel for each data type, so that all data on a particular channel is
of the same type.

By using a separate Datatype Channel for each type of data, all of the messages on a given channel
will contain the same type of data. The sender, knowing what type the data is, will need to select
the appropriate channel to send it on. The receiver, knowing what channel the data was received
on, will know what its type is.

As discussed in Message Channel, channels are cheap but not free. An application may need to
transmit many different data types, too many to create a separate Datatype Channel for each. In
this case, multiple data types can share a single channel by using a different Selective Consumer for
each type. This makes a single channel act like multiple data type channels. Whereas Datatype
Channel explains why all messages on a channel must be of the same format, Canonical Data Model
explains how all messages on all channels in an enterprise should follow a unified data model.

A Message Dispatcher, besides providing concurrent message consumption, can be used to process
a generic set of messages in type-specific ways. Each message must specify its type; the
dispatcher detects the message's type and dispatches it to a type-specific performer for
processing. The messages on the channel are still all of the same type, but that type is the more
general one that the dispatcher supports, not the more specific ones that the various performers
require.

Example: Stock Trading

In a stock trading system, if the format of a quote request is different from that of a trade request,
the system should use a separate Datatype Channel for communicating each kind of request.
Likewise, a change-of-address announcement may have a different format from a
change-of-portfolio-manager announcement, so each kind of announcement should have its own
Datatype Channel.

Example: Purchasing System

Reconsidering our earlier example, since the sender wants to send three different types of data
(purchase orders, price quotes, and queries), it should use three different channels. When sending
an item, the sender must select the appropriate Datatype Channel for that item. When receiving an
item, the receiver knows the item’s type because of which datatype channel it received the item
on.

Related patterns: Canonical Data Model, Command Message, Format Indicator, Message Channel,
Message Dispatcher, Selective Consumer, Messaging

Invalid Message Channel

An application is using Messaging to receive Messages.

How can a messaging receiver gracefully handle receiving a message that makes no sense?

In theory, everything on a Message Channel is just a message and message receivers just process
messages. However, to process a message, a receiver must be able to interpret its data and
understand its meaning. This is not always possible: the message body may cause parsing errors,
lexical errors, or validation errors. The message header may be missing needed properties, or the
property values may not make sense. A sender might put a perfectly good message on the wrong
channel, transmitting it to the wrong receiver. A malicious sender could purposely send an
incorrect message just to mess-up the receiver. A receiver may not be able to process all messages
it receives, so it needs to have some other way to handle messages it does not consider valid.

A Message Channel is a Datatype Channel, where each of the messages on the channel is supposed
to be of the proper datatype for that channel. If a sender puts a message on the channel that is not
of the proper datatype, the messaging system will transmit the message successfully, but the
receiver will not recognize the message and will not know how to process it.

An example of a message with an improper datatype or format is a byte message on a channel
that is supposed to contain text messages. Another example is a message whose format is not
correct, such as an XML document that is not well-formed, or that is not valid for the
agreed-upon DTD or schema. There's nothing wrong with these messages, as far as the
messaging system is concerned, but the receiver will not be able to process them, so they are
invalid.

Messages that do not contain the header field values that the receiver expects are also invalid. If a
message is supposed to have header properties such as a Correlation Identifier, Message Sequence
identifiers, a Return Address, etc., but the message is missing the properties, then the messaging
system will deliver the message properly but the receiver will not be able to process it
successfully.

Invalid Message

When the receiver discovers that the message it's trying to process is not valid, what should it do
with the message? It could put the message back on the channel, but then the message will just be
re-consumed by the same receiver or another like it. Meanwhile, invalid messages that are being
ignored will clutter the channel and hurt performance. The receiver could consume the invalid
message and throw it away, but that would tend to hide messaging problems that need to be
detected. What the system needs is a way to clean improper messages out of channels and put
them somewhere out of the way, yet in a place where these invalid messages can be detected to
diagnose problems with the messaging system.

The receiver should move the improper message to an Invalid Message Channel, a special
channel for messages that could not be processed by their receivers.

When designing a messaging system for applications to use, the administrator will need to define
one or more Invalid Message Channels for the applications to use.

The Invalid Message Channel will not be used for normal, successful communication, so its being
cluttered with improper messages will not cause a problem. An error handler that wants to
diagnose improper messages can use a receiver on the invalid channel to detect messages as they
become available.

A Invalid Message Channel is like an error log for messaging. When something goes wrong in an
application, it's a good idea to log the error. When something goes wrong processing a message,
it's a good idea to put the message on the channel for invalid messages. If it won't be obvious to
anyone browsing the channel why this message is invalid, the application should also log an
error with more details.

Keep in mind that a message is neither inherently valid or invalid--it is the receiver's context and
expectations that make this determination. A message that may be valid for one receiver may be
invalid for another receiver; two such receivers should not share the same channel. A message
that is valid for one receiver on a channel should be valid for all other receivers on that channel;

likewise, if one receiver considers a message invalid, all other receivers should as well. It is the
sender's responsibility to make sure that a message it sends on a channel will be considered valid
by the channel's receivers; otherwise, the receivers will ignore the sender's messages by rerouting
them to the Invalid Message Channel.

A similar but separate problem is when a message is structured properly, but its contents are
semantically incorrect. For example, a Command Message may instruct the receiver to delete a
database record that does not exist. This is not a messaging error, but an application error. As
such, while it may be tempting to move the message to the Invalid Message Channel, there is
nothing wrong with the message, so treating it as invalid is misleading. Rather, an error like this
should be handled as an invalid application request, not an invalid message.

This differentiation between message-processing errors and application errors becomes simpler
and clearer when the receiver is implemented as a Service Activator or Messaging Gateway. These
patterns separate message-processing code from the rest of the application. If an error occurs
while processing the message, the message is invalid and should be moved to the Invalid Message
Channel. If it occurs while the application processes the data from the message, that is an
application error that has nothing to do with messaging.

An Invalid Message Channel whose contents are ignored is about as useful as an error log that is
ignored. Messages on the Invalid Message Channel indicate application integration problems, so
those messages should not be ignored; rather, they should be analyzed to determine what went
wrong so that the problem can be fixed. Ideally, this would be an automated process that
consumed invalid messages, determined their cuause, and fixed the underlying problems.
However, the cause is often a coding or configuration error which requires a developer or system
analyst to evaluate and repair. At the very least, applications which use messaging and Invalid
Message Channels should have a process that monitors the Invalid Message Channel and alerts
system administrators whenever the channel contains messages.

A similar concept implemented by many messaging systems is a Dead Letter Channel. Whereas an
Invalid Message Channel is for messages that can be delivered and received but not processed, a
Dead Letter Channel is for messages that the messaging system cannot deliver properly.

Example: Stock Trading

In a stock trading system, an application for executing trade requests might receive a request for
a current price quote, or a trade request that does not specify what security to buy or how many
shares, or a trade request that does not specify who to send the trade confirmation to. In any of
these cases, the application has received an invalid message--one that does not meet the
minimum requirements necessary for the application to be able to process the trade request. Once
the application determines the message to be invalid, it should resend the message onto the
Invalid Message Channel. The various applications that send trade requests may wish to monitor
the Invalid Message Channel to determine if their requests are being discarded.

Example: JMS Specification

In JMS, the specification suggests that if a MessageListener gets a message it cannot process, a
well-behaved listener should divert the message “to some form of application-specific
‘unprocessable message’ destination.” [JMS11, p.69] This unprocessable message destination is an
Invalid Message Channel.

Example: Simple Messaging

JMS Request/Reply Example and .NET Request/Reply Example show an example of how to
implement receivers that reroute messages they cannot process to an Invalid Message Channel.

Related patterns: Command Message, Correlation Identifier, Datatype Channel, Dead Letter Channel,
Message, Message Channel, Message Sequence, Messaging, Service Activator, Messaging Gateway, JMS
Request/Reply Example, .NET Request/Reply Example, Return Address

Dead Letter Channel

An enterprise is using Messaging to integrate applications.

What will the messaging system do with a message it cannot deliver?

If a receiver receives a message it cannot process, it should move the invalid message to an Invalid
Message Channel. But what if the messaging system cannot deliver the message to the receiver in
the first place?

There are a number of reasons the messaging system may not be able to deliver a message. The
messaging system may not have the message’s channel configured properly. The message’s
channel may be deleted after the message is sent but before it can be delivered or while it is
waiting to be received. The message may expire before it can be delivered (see Message Expiration).
A message without an explicit expiration may nevertheless timeout if it cannot be delivered for a
very long time. A message with a Selective Consumer that everyone ignores will never be read and
may eventually die. A message could have something wrong with its header that prevents it
from being delivered successfully.

Once the messaging system determines that it cannot deliver a message, it has to do something
with the message. It could just leave the message wherever it is, cluttering up the system. It could
try to deliver the message back to the sender, but the sender is not a receiver and cannot detect
deliveries. It could just delete the message and hope no one misses it, but this may well cause a
problem for the sender that has successfully sent the message and expects it to be delivered (and
received and processed).

When a messaging system determines that it cannot or should not deliver a message, it may
elect to move the message to a Dead Letter Channel.

The specific way a Dead Letter Channel works depends on the specific messaging system’s
implementation, if it provides one at all. The channel may be called a “dead message queue”
[Monson-Haefel, p.125] or “dead letter queue.” [MQSeries], [Dickman, pp.28-29] Typically, each
machine the messaging system is installed on has its own local Dead Letter Channel so that
whatever machine a message dies on, it can be moved from one local queue to another without
any networking uncertainties. This also records what machine the message died on. When the
messaging system moves the message, it may also record the original channel the message was
supposed to be delivered on.

The difference between a dead message and an invalid one is that the messaging system cannot
successfully deliver what it then deems a dead message, whereas an invalid message is properly
delivered but cannot be processed by the receiver. Determining if a message should be moved to
the Dead Letter Channel is an evaluation of the message’s header performed by the messaging
system; whereas the receiver moves a message to an Invalid Message Channel because of the
message’s body or particular header fields the receiver is interested in. To the receiver,
determination and handling of dead messages seems automatic, whereas the receiver must
handle invalid messages itself. A developer using a messaging system is stuck with whatever
dead message handling the messaging system provides, but can design his own invalid message
handling, including handling for seemingly dead messages that the messaging system doesn’t
handle.

Example: Stock Trading

In a stock trading system, an application that wishes to perform a trade can send a trade request.
To make sure that the trade is received in a reasonable amount of time (less than five minutes,
perhaps), the requestor sets the request's Message Expiration to five minutes. If the messaging
system cannot deliver the request in that amount of time, or if the trading application does not

receive the message (e.g., read it off of the channel) in time, then the messaging system will take
the message off of the trade request channel and put the message on the Dead Letter Channel. The
trading system may wish to monitor the system's Dead Letter Channels to determine if it is missing
trades.

Related patterns: Invalid Message Channel, Message Expiration, Selective Consumer, Messaging

Guaranteed Delivery

An enterprise is using Messaging to integrate applications.

How can the sender make sure that a message will be delivered, even if the messaging system
fails?

One of the main advantages of asynchronous messaging over RPC is that the sender, the receiver,
and network connecting the two don’t all have to be working at the same time. If the network is
not available, the messaging system has to store the message until the network becomes available.
If the receiver is unavailable, the messaging system has to store the message and retry delivery
until the receiver becomes available. This is the store and forward process that messaging is based
on. So where should the message be stored before it is forwarded?

By default, the messaging system stores the message in memory until it can successfully forward
the message to the next storage point. This works as long as the messaging system is running
reliably, but if the messaging system crashes (for example, because one of its computers loses
power or the messaging process aborts unexpectedly), all of the messages stored in memory are
lost.

Most applications have to deal with similar problems. All data that is stored in memory is lost if
the application crashes. To prevent this, applications use files and databases to persist data to
disk so that it survives system crashes.

Messaging systems need a similar way to persist messages more permanently so that no message
gets lost even if the system crashes.

Use Guaranteed Delivery to make messages persistent so that they are not lost even if the
messaging system crashes.

With Guaranteed Delivery, the messaging system uses a built-in data store to persist messages.
Each computer the messaging system is installed on has its own data store so that the messages
can be stored locally. When the sender sends a message, the send operation does not complete
successfully until the message is safely stored in the sender’s data store. Subsequently, the
message is not deleted from one data store until it is successfully forwarded to and stored in the
next data store. In this way, once the sender successfully sends the message, it is always stored on
disk on at least one computer until is successfully delivered to and acknowledged by the receiver.

Persistence increases reliability, but at the expense of performance. Thus if it’s OK to loose
messages when the messaging system crashes or is shut down, avoid using Guaranteed Delivery so
that messages will move through the messaging system faster.

Also consider that Guaranteed Delivery can consume a large amount of disk space in high-traffic
scenarios. If a producer generates hundreds or thousands of messages per second, then a network
outage that lasts multiple hours could use up a huge amount of disk space. Because the network
is unavailable, the messages have to be stored on the producing computer’s local disk drive
which may not be designed to hold this much data. For these reasons, some messaging systems
allow you to configure a retry timeout parameter that specifies how long messages are buffered
inside the messaging system. In some high-traffic applications (e.g., streaming stock quotes to
terminals), this timeout may have to be set to a short time span, for example a few minutes.
Luckily, in many of these applications, messages are used as Event Messages and can safely be
discarded after a short amount of time elapses (see Message Expiration).

It can also be useful to turn off Guaranteed Delivery during testing and debugging. This makes it
easy to purge all message channels by stopping and restarting the messaging server. Messages
that are still queued up can make it very tedious to debug even simple messaging programs. For
example, you may have a sender and a receiver connected by a Point-to-Point Channel. If a
message is still stored on the channel, the receiver will process that message before any new
message that the sender produces. This is a common debugging pitfall in asynchronous,
guaranteed messaging. Many commercial messaging implementations also allow you to purge
queues individually to allow a fresh restart during testing.

How guaranteed is guaranteed messaging?

It is important to keep in mind that reliability in computer systems tends to be measured in the "number of 9s", e.g. 99.9%. This

tells us that something is rarely 100% reliable, with the cost already increasing exponentially to move from 99.9% to 99.99%.

The same caveats apply to Guaranteed Delivery. There is always going to be a scenario where a message can get lost. For

example, if the disk that stores the persisted messages fails, messages may get lost. You can make your disk storage more

reliable by using redundant disk storage to reduce the likelihood of failure. This will possibly add another ‘9’ to the reliability

rating, but likely not make it a true 100%. Also, if the networks is unavailable for a long time, the messages that have to be

stored may fill up the computer’s disk, resulting in lost messages. In summary, Guaranteed Delivery is designed to make the

message delivery resilient against expected outages, such as machine failures or network failures, but it is usually not 100%

bullet-proof.

With .NET’s MSMQ implementation, for a channel to be persistent, it must declared transactional,
which means senders usually have to be Transactional Clients. In JMS, with Publish-Subscribe
Channel, Guaranteed Delivery only assures that the messages will be delivered to the active
subscribers. To assure that a subscriber receives messages even when it’s inactive, the subscriber
will need a Durable Subscriber.

Example: Stock Trading

In a stock trading system, trade requests and trade confirmations should probably be sent with
Guaranteed Delivery, to help ensure that none are lost. Likewise, change-of-address
announcements should probably be sent with Guaranteed Delivery. On the other hand, price
updates probably do not require Guaranteed Delivery; loosing some of them is not significant, and
their frequency makes the overhead of Guaranteed Delivery prohibitive.

In Durable Subscriber, the stock trading example says that some price-change subscribers may
wish to be durable. If so, then perhaps the price-change channel should guarantee delivery as
well. Yet other subscribers may not need to be durable nor want to suffer the overhead of
Guaranteed Delivery. How can these different needs be met? The system may wish to implement
two price-change channels, one with Guaranteed Delivery and another without. Only subscribers
that require all updates should subscribe to the persistent channel, and their subscriptions should
be durable. The publisher may wish to publish updates less frequently on the persistent channel
because of its increased overhead.

Example: JMS Persistent Messages

In JMS, message persistence can be set on a per-message basis. In other words, some messages on
a particular channel may be persistent while others might not be. [JMS11, pp.71-72], [Hapner,
pp.58-59]

When a JMS sender wants to make a message persistent, it uses its MessageProducer to set the
message’s JMSDeliveryMode to PERSISTENT. The sender can set persistency on a per-message basis
like this:

Session session = // obtain the session

Destination destination = // obtain the destination

Message message = // create the message

MessageProducer producer = session.createProducer(destination);

producer.send(

 message,

 javax.jms.DeliveryMode.PERSISTENT,

 javax.jms.Message.DEFAULT_PRIORITY,

 javax.jms.Message.DEFAULT_TIME_TO_LIVE);

If the application wants to make all of the messages persistent, it can set that as the default for the
message producer:

producer.setDeliveryMode(javax.jms.DeliveryMode.PERSISTENT);

(And, in fact, the default delivery mode for a message producer is persistent). Now, messages
sent by this producer are automatically persistent, so they can simply be sent:

producer.send(message);

Meanwhile, messages sent by other message producers on the same channel may be persistent,
depending on how those producers configure their messages.

Example: IBM WebSphere MQ

In WebSphere MQ, Guaranteed Delivery can be set on a per-channel basis or a per-message basis.
If the channel is not persistent, the messages cannot be persistent. If the channel is persistent, the
channel can be configured such that all messages sent on that channel are automatically
persistent, or such that an individual message can be sent persistently or non-persistently.

A channel is configured to be persistent (or not) when it is created in the messaging system. For
example, the channel can be configured so that all of its messages will be persistent:

DEFINE Q(myQueue) PER(PERS)

Or, the channel can be configured so that the message sender can specify with each message
whether the message is persistent or transient:

DEFINE Q(myQueue) PER(APP)

If the channel is set to allow the sender to specify persistency, then a JMS MessageProducer can set
that delivery-mode property as described earlier. If the channel is set to make all messages
persistent, then the delivery-mode settings specified by the MessageProducer are ignored. [WSMQ,
pp.45-56]

Example: .NET Persistent Messages

With .NET, persistent messages are created by making a MessageQueue transactional:

MessageQueue.Create("MyQueue", true);

All messages sent on this queue will automatically be persistent. [Dickman, p.257]

Related patterns: Durable Subscriber, Event Message, Message Expiration, Messaging, Point-to-Point
Channel, Publish-Subscribe Channel, Transactional Client

Channel Adapter

Many enterprises use Messaging to integrate multiple, disparate applications.

How can you connect an application to the messaging system so that it can send and receive
messages?

Most applications were not designed to work with a messaging infrastructure. There are a
number of reasons for this. Many applications were developed as self-contained, stand-alone
solutions but contain data or functionality that can be leveraged by other systems. For example,
many mainframe applications were designed as a one-in-all application that does not need to
interface with other applications.

Many message-oriented middleware systems expose proprietary API's so that an application
developer or vendor would have to provide multiple implementations of a messaging interface
for the application.

If applications need to exchange data with other applications, they often are designed to use
more generic interface mechanisms such as file exchange or database tables. Reading and writing
files is a basic operating system function and does not depend on vendor-specific API's. Likewise,
most business applications already persists data into a database, so little extra effort is required to
store data destined for other systems in a database table. Or an application can expose internal
functions in a generic API that can be used by any other integration strategy, including
messaging.

Other applications may be capable of communicating via a simple protocols like HTTP or
TCP/IP. However, these protocols do not provide the same reliability as a Message Channel and
the data format used by the application is usually specific to the application and not compatible
with a common messaging solution.

In the case of custom applications, we could add code inside the application to send and receive
messages. However, this can introduce additional complexity into the application and we need to
be careful not to introduce any undesired side-effects when making these changes. Also, this

approach requires developers who are skilled with both the application logic and the messaging
API. If we deal with a packaged application that we purchased from a third-party software
vendor, we may not even have the option of changing the application code.

Use a Channel Adapter that can access the application's API or data and publish messages on a
channel based on this data, and that likewise can receive messages and invoke functionality
inside the application.

The adapter acts as a messaging client to the messaging system and invokes applications
functions via an application-supplied interface. This way, any application can connect to the
messaging system and be integrated with other applications as long as it has a proper Channel
Adapter.

The Channel Adapter can connect to different layers of the application's architecture, depending on
that architecture and the data the messaging system needs to access.

A Channel Adapter Connecting to Different Layers of an Application

• User Interface Adapter. Sometimes disparagingly called "screen scraping," these types of adapters can be
very effective in many situations. For example, an application may be implemented on a platform that is not

supported by the messaging system. Or, the owner of the application may have little interest in supporting the

integration. This eliminates the option of running the Channel Adapter on the application platform. However,

the user interface is usually available from other machines and platforms (e.g. 3270 terminals). Also, the

surge of Web-based thin-client architectures has caused a certain revival of user interface integration.

HTML-based user interfaces make it very easy to make an HTTP request and parse out the results. Another

advantage of user-interface integration is that no direct access to the application internals is needed. In some

cases, it may not be desirable or possible to expose internal functions of a system to the integration solution.

Using a user-interface adapter, other applications have the exact same access to the application as a regular

user. The downside of user interface adapters is the potential brittleness and low speed of the solution. The

application has to parse "user" input and render a screen in response, just so that the Channel Adapter can

parse the screen back into raw data. This process involves many unnecessary steps and can be slow. Also,

user interfaces tend to change more frequently than the core application logic. Every time the user interface

changes, the Channel Adapter is likely to have to be changed as well.

• Business Logic Adapter. Most business applications expose their core functions as an API. This interface
may be a set of component (e.g. EJB's, COM objects, CORBA components) or a direct programming API

(e.g., a C++, C#, or Java library). Since the software vendor (or developer) exposes these API's expressly for

access by other applications, they tend to be more stable than the user interface. In most cases, accessing the

API is also more efficient. In general, if the application exposes a well-defined API, this type of Channel

Adapter is likely to be the best approach.

• Database Adapter. Most business applications persist their data inside a relational database. Since the
information is already in the database, Channel Adapter can extract information directly from the database

without the application ever noticing, which is very non-intrusive. The Channel Adapter can even add a

trigger to the relevant tables and send messages every time the data in these tables changes. This type of

Channel Adapter can also be very efficient and is quite universal, aided by the fact that only two or three

database vendors dominate the market for relational databases. This allows us to connect to many

applications with a relatively generic adapter. The downside of a database adapter is that we are poking

around deep in the internals of an application. This may not be as risky if we simply read data, but making

updates directly to the database can be very dangerous. Also, many application vendors consider the database

schema "unpublished," meaning that they reserve the right to change it at will, which can make a database

adapter solution brittle.

An important limitation of Channel Adapters is that they can convert messages into application
functions, but require message formatting that closely resembles the implementation of the
components being adapted. For example, a database adapter typically requires the message field
names of incoming messages to be the same as the names of tables and fields in the application
database. This kind of message format is driven entirely by the internal structure of the
application and is not a good message format to use when integration with other applications.
Therefore, most Channel Adapters require the combination with a Message Translator to convert the
application-specific message into a message format that complies with the Canonical Data Model.

Channel Adapters can often times run on a different computer than the application or the database
itself. The Channel Adapter can the connect to the application logic or the database via protocols
such as HTTP or ODBC. While this setup allows us to avoid installing additional software on the
application or database serer, these protocols do not provide the same quality-of-service that a
messaging channel provides, such as guaranteed delivery.

Some Channel Adapters may be unidirectional. For example, if a Channel Adapter connects to an
application via HTTP, it may only be able to consume messages and invoke functions on the
application, but it may not be able to detect changes in the application data.

An interesting variation of the Channel Adapter is the Metadata Adapter, sometimes called
Design-Time Adapter. This type of data does not invoke application functions, but extracts
metadata, data that describes the internal data formats of the application. This metadata can then
be used to configure Message Translators or to detect changes in the application data formats (see
Introduction to Message Transformation). Many application interfaces support the extraction of
metadata. For example, most commercial databases provide a system tables that contain a
description of the application tables. Likewise, most component frameworks (e.g. J2EE, .NET)
provide special "reflection" functions that allow a component to enumerate methods provided by
another component.

A special form of the Channel Adapter is the Messaging Bridge. The Messaging Bridge connects the
messaging system to another messaging system as opposed to a specific application. Typically, a
Channel Adapter is implemented as a Transactional Client to ensure that each piece of work the
adapter does succeeds in both the messaging system and the other system being adapted.

Example: Stock Trading

A stock trading system may wish to keep a log of all of a stock's prices in a database table. The
messaging system may include a relational database adapter that logs each message from a
channel to a specified table and schema. This channel-to-RDBMS adapter is a Channel Adapter.
The system may also be able to recieve external quote requests from the Internet (TCP/IP or
HTTP) and send them on its internal quote-request channel with the internal quote requests. This
Internet-to-channel adapter is a Channel Adapter.

Example: Commercial EAI Tools

Commercial EAI vendors provide a collection of Channel Adapters as part of their offerings.
Having adapters to all major application packages available simplifies development of an
integration solution greatly. Most vendors also provide more generic database adapters as well as
software development kits (SDK's) to develop custom adapters.

Example: Legacy Platform Adapters

A number of vendors provide adapters from common messaging system to legacy systems
executing on platforms such as as UNIX, MVS, OS/2, AS/400, Unisys, and VMS. Most of these
adapters are specific to a certain messaging system. For example, Envoy Technologies' EnvoyMQ
is a Channel Adapter that connects many legacy platforms with MSMQ. It consists of a client
component that runs on the legacy computer and a server component that runs on a Windows
computer with MSMQ.

Example: Web Services Adapters

Many messaging systems provide Channel Adapters to convert SOAP messages between HTTP
transport and the messaging system. This way, SOAP messages can be transmitted over an
intranet using the messaging system, and over the global Internet (and through firewalls) using
HTTP. One example is the Web Services Gateway for IBM's WebSphere Application Server.

Related patterns: Canonical Data Model, Message Channel, Introduction to Message Transformation,
Message Translator, Messaging, Messaging Bridge, Transactional Client

Messaging Bridge

An enterprise is using Messaging to enable applications to communicate. However, the enterprise
uses more than one messaging system, which confuses the issue of which messaging system an
application should connect to.

How can multiple messaging systems be connected so that messages available on one are also
available on the others?

A common problem is an enterprise that uses more than one messaging system. This can occurr
because of a merger or aquisition between two different companies that have standardized
around different messaging products. Sometimes a single enterprise that uses one messaging
system to integrate their mainframe/legacy systems chooses another for their J2EE or .NET web
application servers, and then needs to integrate the two messaging systems. Another common
occurrance is an application that participates as part of multiple enterprises, such as a B2B client
that wants to be a bidder in multiple auctioning systems; if the various auction clusters use
different messaging systems, the bidder applications within an enterprise may wish to
consolodate the messages from several external messaging systems onto a single internal
messaging system. Another example: An extremely large enterprise with a huge number of
Message Channels and Message Endpoints may require more than one instance of the messaging
system, which means those instances must be connected somehow.

If the messages on one system are of no interest to the applications using the other messaging
system, then the systems can remain completely separate. But because the applications are part of
the same enterprise, often some applications using one messaging system will be interested in
messages being transmitted on another messaging system.

A common misconception is that a standardized messaging API such as JMS solves this problem;
it does not. JMS makes two complient messaging systems look the same to a client application,
but it does nothing to make the two messaging systems work with each other. For the messaging
systems to work together, they need to be interoperable, meaning that they use the same message
format and transmit a message from one message store to the next in the same way. Messaging

systems from two different vendors are rarely interoperable; a message store from one vendor
can only work with other message stores from the same vendor.

Each application in the enterprise could choose to implement a client for each messaging system
in the enterprise, but that would increase complexity and duplication in the messaging layer.
This redundency would become especially apparent if the enterprise added yet another
messaging system and all of the applications had to be modified. On the other hand, each
application could choose to only interface with one messaging system and ignore data on the
other messaging systems. This would make the application simpler but could cause it to ignore a
great deal of enterprise data.

What is needed is a way for messages on one messaging system that are of interest to
applications on another messaging system to be made available on the second messaging system
as well.

Use a Messaging Bridge, a connection between messaging systems, to replicate messages
between systems.

Typically, there is no practical way to connect two complete messaging systems, so instead we
connect individual, corresponding channels between the messaging systems. The Messaging
Bridge is a set of Channel Adapters, where the non-messaging client is a actually another
messaging system, and where each pair of adapters connects a pair of corresponding channels.
The bridge acts as map from one set of channels to the other, and also transforms the message
format of one system to the other. The connected channels may be used to transmit messages
between traditional clients of the messaging system, or strictly for messages intended for other
messaging systems.

You may need to implement the Messaging Bridge for your enterprise yourself. The bridge is a
specialized Message Endpoint application that is a client of both messaging systems. When a
message is delivered on a channel of interest in one messaging system, the bridge consumes the
message and sends another with the same contents on the corresponding channel in the other
messaging system.

Many messaging system vendors have product extensions for bridging to messaging systems
from other vendors. Thus you may be able to buy a solution rather than build it yourself.

If the other "messaging system" is really a simpler protocol, such as HTTP, apply the Channel
Adapter pattern.

Messaging Bridge is necessary because different messaging system implementations have their
own proprietary approaches for how to represent messages and how to forward them from one
store to the next. Web services may be standardizing this, such that two messaging system
installs, even from different vendors, may be able to act as one by transferring messaging using
web services standards. See the discussion of WS-Reliability and WS-ReliableMessaging in
Emerging Standards and Futures in Enterprise Integration.

Example: Stock Trading

A brokerage house may have one messaging system that the applications in its various offices
use to communicate. A bank may have a different messaging system that the applications in its
various branches use to communicate. If the brokerage and the bank decide to merge into a single
company that offers bank accounts and investment services, which messaging system should the
combined company use? Rather than redesigning half of the company's applications to use the
new messaging system, the company can use a Messaging Bridge to connect the two messaging
systems. This way, for example, a banking application and a brokerage application can
coordinate to transfer money between a savings account and a securities trading account.

Example: MSMQ Bridges

MSMQ defines an architecture based on connector servers that enables connector applications to
send and receive messages using other (non-MSMQ) messaging systems. An MSMQ application
using a connector server can perform the same opperations on channels from other messaging
systems that it can perform on MSMQ channels. [Dickman, pp.42-45]

Microsoft's Host Integration Server product contains an MSMQ-MQSeries Bridge service that
makes the two messaging systems work together. It lets MSMQ applications send messages via
MQSeries channels and vise versa, making the two messaging systems act as one.

Envoy Tecnologies, licenser of the MSMQ-MQSeries Bridge, also has a related product called
Envoy Connect. It connects MSMQ and BizTalk servers with messaging servers running on
non-Windows platforms, especially the J2EE platform, coordinating J2EE and .NET messaging
within an enterprise.

Example: SonicMQ Bridges

Sonic Software's SonicMQ has SonicMQ Bridge products that support IBM MQSeries, TIBCO
TIB/Rendezvous, and JMS. This enables messages on Sonic channels to be transmitted on other
messaging systems' channels as well.

Related patterns: Channel Adapter, Emerging Standards and Futures in Enterprise Integration,
Message Channel, Message Endpoint, Messaging

Message Bus

An enterprise contains several existing systems that must be able to share data and operate in a
unified manner in response to a set of common business requests.

What is an architecture that enables separate applications to work together, but in a decoupled
fashion such that applications can be easily added or removed without affecting the others?

An enterprise often contains a variety of applications that operate independently, yet need to
work together in a unified manner. Enterprise Application Integration (EAI) describes a solution
to this problem but doesn’t describe how to accomplish it.

For example, consider an insurance company that sells different kinds of insurance products (life,
health, auto, home, etc.). As a result of corporate mergers, and of the varying winds of change in
IT development, the enterprise consists of a number of separate applications for managing the
company’s various products. An insurance agent trying to sell a customer several different types
of policies must log into a separate system for each policy, wasting effort and increasing the
opportunity for mistakes.

Insurance Company EAI Scenario

The agent needs a single, unified application for selling customers a portfolio of policies. Other
types of insurance company employees, such as claims adjusters and customer service
representatives, need their own applications for working with the insurance products, but also
want their applications to present a unified view. The individual product applications need to be
able to work together, perhaps to offer a discount will purchasing more than one policy, and
perhaps to process a claim that is covered by more than one policy.

The IT department could rewrite the product applications to all use the same technology and
work together, but the amount of time and money to replace systems that already work (even
though they don’t work together) is prohibitive. IT could create a unified application for the
agents, but this application needs to connect to the systems that actually manage the policies.

Rather than unifying the systems, this new application creates one more system that doesn’t
integrate with the others.

The agent application could integrate with all of these other systems, but that would make it
much more complex. The complexity would be duplicated in the applications for claims adjusters
and customer service representatives. Furthermore, these unified user applications would not
help the product applications integrate with each other.

Even if all of these applications could be made to work together, any change to the enterprise’s
configuration could make it all stop working. Not all applications will be available all of the time,
yet the ones that are running need to be able to continue with minimal impact from those that are
not running. Over time, applications will need to be added to and removed from the enterprise,
with minimal impact on the other applications.

What is needed is an integration architecture that enables the product applications to coordinate
in a loosely coupled way, and for user applications to be able to integrate with them.

Structure the connecting middleware between these applications as a Message Bus that
enables them to work together using messaging.

A Message Bus is a combination of a common data model, a common command set, and a
messaging infrastructure to allow different systems to communicate through a shared set of
interfaces. This is analogous to a communications bus in a computer system, which serves as the
focal point for communication between the CPU, main memory, and peripherals. Just as in the
hardware analogy, there are a number of pieces that come together to form the message bus:

• Common communication infrastructure — Just as the physical pins and wires of a PCI
bus provide a common, well-known physical infrastructure for a PC, a common
infrastructure must serve the same purpose in a message bus. Typically, a messaging
system is chosen to serve as the physical communications infrastructure, providing a
cross-platform, cross-language universal adapter between the applications. The
infrastructure may include Message Router capabilities to facilitate the correct routing of
messages from system to system. Another common option is to use Publish-Subscribe
Channels to facilitate sending messages to all receivers.

• Adapters — The different systems must find a way to interface with the message bus.
Most commonly, this is done with commercial or custom Channel Adapters and Service
Activators that can handle things like invoking CICS transactions with the proper
parameters, or representing the general data structures flowing on the bus in the specific
and particular way they should be represented inside each system. This also requires a
Canonical Data Model that all systems can agree on.

• Common Command Structure — Just like PC architectures have a common set of
commands to represent the different operations possible on the physical bus (read bytes
from an address, write bytes to an address), there needs to be common commands that
are understood by all the participants in the Message Bus. Command Message illustrates
how this feature works. Another common implementation for this is the Datatype Channel,
where a Message Router makes an explicit decision as to how to route particular messages
(like Purchase Orders) to particular endpoints. It is at the end that the analogy breaks
down, since the level of the messages carried on the bus are much more fine-grained than
the “read/write” kinds of messages carried on a physical bus.

In our EAI example, a Message Bus could serve as a universal connector between the various
insurance systems, and as a universal interface for client applications that wish to connect to the
insurance systems.

Insurance Company Message Bus

Here we have a two GUI’s that only know about the Message Bus—they are entirely unaware of
the complexities of idiosyncrasies of the underlying systems. The bus is responsible for routing
Command Messages to the proper underlying systems. In some cases, the best way to handle the
command messages is to build an adapter to the system that interprets the command and then
communicates with the system in a way it understands (invoking a CICS transaction, for instance,
or calling a C++ API). In other cases, it may be possible to build the command-processing logic
directly into the existing system as an additional way to invoke current logic.

Once the Message Bus has been developed for the agent GUI, it is easy to reuse for other GUIs
such as those for claims processors, customer service representatives, and a web interface for

customer to browse their own accounts. The features and security control of these GUI
applications differ, but their need to work with the backend applications is the same.

A Message Bus forms a simple, useful service-oriented architecture for an enterprise. Each service
has at least one request channel that accepts requests of an agreed-upon format, and probably a
corresponsing reply channel that supports a specified reply format. Any participant application
can make use of these services by making requests and waiting for replies. The request channels,
in effect, act as a directory of the services available.

A Message Bus requires that all of the applications using the bus use the same Canonical Data
Model. Applications adding messages to the bus may need to depend on Message Routers to route
the messages to the appropriate final destinations. Applications not designed to interface with a
messaging system may require Channel Adapters and Service Activators.

Example: Stock Trading

A stock trading system may wish to offer a unified suite of services including stock trades, bond
auctions, price quotes, portfolio management, etc. This may require several separate back-end
systems that have to coordinate with each other. To unify the services for a front-end customer
GUI, the system could employ an intermediate application that offered all of these services and
delegated their performane to the back-end systems. The back-end systems could even
coordinate through this intermediary application. However, the intermediary application would
tend to become a bottleneck and a single point of failure.

Rather than an intermediary application, a better approach might be a Message Bus with channels
for requesting various services and getting their responses. This bus could also enable to
back-end systems to coordinate with each other. A front-end system could simply connect to the
bus and use it to invoke services. The bus could relatively easily be distributed across multiple
computers to provide load distribution and fault tolerance.

Once the Message Bus is in place, connecting front-end GUI’s would be relatively easy; they each
just need to send and receive messages from the proper channels. One GUI might enable a retail
broker to manage his customers’ portfolios. Another web-based GUI could enable any customer
with a web browser to manage his own portfolio. Another non-GUI front-end might support
personal finance programs like Intuit’s Quicken and Microsoft’s Money, enabling customers
using those programs to download trades and current prices. Once the Message Bus is in place,
developing new user applications is much simpler.

Likewise, the trading system may want to take advantage of new back-end applications such as
switching one trading application for another or spreading price quote requests across multiple
applications. Implementing a change like this is a simple as adding and removing applications
from the Message Bus. Once the new applications are in place, none of the other applications have
to change; they just keep sending messages on the bus’ channels as usual.

Related patterns: Canonical Data Model, Channel Adapter, Command Message, Datatype Channel,
Message Router, Service Activator, Publish-Subscribe Channel

5．Message Construction

Introduction

In Introduction to Messaging Systems, we discussed Message. When two applications wish to exchange a piece of data,
they do so by wrapping it in a message. Whereas a Message Channel cannot transmit raw data per se, it can transmit

the data wrapped in a message.

Deciding to create a Message and send it raises several other issues:

Message intent — Messages are ultimately just bundles of data, but the sender can have different
intentions for what it expects the receiver to do with the message. It can send a Command Message,
specifying a function or method on the receiver that the sender wishes to invoke. The sender is
telling the receiver what code to run. It can send a Document Message, enabling the sender to
transmit one of its data structures to the receiver. The sender is passing the data to the receiver,
but not specifying what the receiver should necessarily do with it. Or it can send an Event
Message, notifying the receiver of a change in the sender. The sender is not telling the receiver
how to react, just providing notification.

Returning a response — When an application sends a message, it often expects a response
confirming that the message has been processed and providing the result. This is a Request-Reply
scenario. The request is usually a Command Message, and the reply is a Document Message
containing a result value or an exception. The requestor should specify a Return Address in the
request to tell the replier what channel to use to transmit the reply. The requestor may have
multiple requests in process, so the reply should contain a Correlation Identifier that specifies
which request this reply corresponds to. [JMS11, pp.27-28]

There are two common Request-Reply scenarios worth noting that both involve a Command
Message request and a corresponding Document Message reply. In the first scenario, Messaging RPC,
the requestor not only wants to invoke a function on the replier, but also wants the return value
from the function. This is how applications perform an RPC (Remote Procedure Call) using
Messaging. In the other scenario, Messaging Query, the requestor is performing a query that the
replier will execute and return the results in the reply. This is how applications use messaging to
perform a query remotely.

Huge amounts of data — Sometimes applications want to transfer a really large data structure,
one that may not fit comfortably in a single message. In this case, break the data into more
managable chunks and send them as a Message Sequence. The chunks have to be sent as a
sequence, and not just a bunch of messages, so that the receiver can reconstruct the original data
structure.

Slow messages — A concern with messaging is that the sender often does not know how long it
will take for the receiver to receive the message. Yet the message contents may be time-sensitive,
such that if the message isn’t received by a deadline, it should just be ignored and discarded. In
this situation, the sender can use Message Expiration to specify an expiration date. If the
messaging system cannot deliver a message by its expiration, it should discard the message. If a
receiver gets a message after its expiration, it should discard the message.

So it’s not enough to decide to use a Message; anytime data needs to be transferred, it will be done through a message.

This chapter will explain the other decisions that go into making messages work.

Command Message

An application needs to invoke functionality provided by other applications. It would typically
use Remote Procedure Invocation, but would like to take advantage of the benefits of using
Messaging.

How can messaging be used to invoke a procedure in another application?

The advantage of Remote Procedure Invocation is that it’s synchronous, so the call is performed
immediately while the caller’s thread blocks. But that’s also a disadvantage. If the call cannot be
made right now—either because the network is down or because the remote process isn’t
running and listening—then the call doesn’t work. If the call were asynchronous, it could keep
trying until the procedure in the remote application is successfully invoked.

Messaging is asynchronous. If the procedure were somehow invoked by a Message, the procedure
would not even have to be remotely accessible, it could just be a local procedure invoked within
its own process. So the question is how to make a procedure call into a message.

Luckily, there’s a well-established pattern for how to encapsulate a request as an object. The
Command pattern [GoF] shows how to turn a request into an object that can be stored and
passed around. If this object were a message, then it could be stored in and passed around
through a Message Channel. Likewise, the command’s state (if any) can be stored in the message’s
state.

Use a Command Message to reliably invoke a procedure in another application.

There is no specific message type for commands; a Command Message is simply a regular message
that happens to contain a command. In JMS, the command message could be any type of message;
examples include an ObjectMessage containing a Serializable command object, a TextMessage
containing the command in XML form, etc. In .NET, a command message is a Message with a
command stored in it. A Simple Object Access Protocol (SOAP) request is a command message.

Command Messages are usually sent on a Point-to-Point Channel so that each command will only be
consumed and invoked once.

Example: SOAP and WSDL

With the SOAP protocol [SOAP 1.1] and WSDL service description [WSDL 1.1], when using
RPC-style SOAP messages, the request message is an example of this Command Message pattern.
With this usage, the SOAP message body (an XML document) contains the name of the method
to invoke in the receiver and the parameter values to pass into the method. This method name
must be the same as one of the message names defined in the receiver's WSDL.

This example from the SOAP spec invokes the receiver's GetLastTradePrice method with a single
parameter called symbol:

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Body>

 <m:GetLastTradePrice xmlns:m="Some-URI">

 <symbol>DIS</symbol>

 </m:GetLastTradePrice>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In a SOAP command, one might expect the method name to be the value of some standard
<method> element; actually, the method name is the name of the method element, prefixed by the
m namespace. Having a separate XML element type for each method makes validating the XML
data much more precise, because the method element type can specify the parameters' names,
types, and order.

Related patterns: Remote Procedure Invocation, Message, Message Channel, Messaging, Point-to-Point
Channel

Document Message

An application would like to transfer data to another application. It could do so using File
Transfer or Shared Database, but those approaches have shortcomings. The transfer might work
better using Messaging.

How can messaging be used to transfer data between applications?

This is a classic problem in distributed processing: One process has data another one needs.

File Transfer is easy to use, but doesn’t coordinate applications very well. A file written by one
application may sit unused for quite a while before another another application reads it. If several
applications are supposed to read it, it’ll be unclear who should take responsibilty for deleting it.

Shared Database requires adding new schema to the database to accomdate the data, or
force-fitting the data into the existing schema. Once the data is in the database, there’s the risk
that other applications which should not have access to the data now do. Triggering the receiver
of the data to now come read it can be difficult, and coordinating multiple readers confuses who
should delete the data.

Remote Procedure Invocation can be used to send the data, but then the caller is also telling the
receiver—via the procedure being invoked—what to do with the data. Likewise, a Command
Message would transfer the data, but would be overly specific about what the receiver should do
with the data.

Yet we do want to use Messaging to transfer the data. Messaging is more reliable than an RPC. A
Point-to-Point Channel can be used to make sure that only one receiver gets the data (no
duplication), or a Publish-Subscribe Channel can be used to make sure that any receiver who wants
the data gets a copy of it. So the trick is to take advantage of Messaging without making the
Message too much like an RPC.

Use a Document Message to reliably transfer a data structure between applications.

Whereas a Command Message tells the receiver to invoke certain behavior, a Document Message just
passes data and lets the receiver decide what, if anything, to do with the data. The data is a single
unit of data, a single object or data structure which may decompose into smaller units.

Document Messages can seem very much like Event Messages; the main difference is a matter of
timing and content. The important part of a Document Message is its content, the document.
Successfully transferring the document is important; the timing of when it is sent and received is
less important. Guaranteed Delivery may be a consideration; Message Expiration probably is not.

A Document Message can be any kind of message in the messaging system. In JMS, the document
message may be an ObjectMessage containing a Serializable data object for the document, or it
may be a TextMessage containing the data in XML form. In .NET, a document message is a
Message with the data stored in it. A Simple Object Access Protocol (SOAP) reply message is a
document message.

Document Messages are usually sent using a Point-to-Point Channel to move the document from
one process to another without duplicating it. Messaging can be used to implement simple
workflow by passing a document to an application that modifies the document and then passes it
to another application. In some cases, a document message can be broadcast via a
Publish-Subscribe Channel, but this creates multiple copies of the document. Either the copies need
to be read-only, or if the receivers change the copies, there will be multiple copies of the
document in the system that contain different data. In Request-Reply, the reply is usually a
Document Message where the result value is the document.

Example: Java and XML

The following example (drawn from the example XML schema in [Graham02]) shows how a
simple purchase order can be represented as XML and sent as a message using JMS.

Session session = // Obtain the session

Destination dest = // Obtain the destination

MessageProducer sender = session.createProducer(dest);

String purchaseOrder =

" <po id=\"48881\" submitted=\"2002-04-23\">

 <shipTo>

 <company>Chocoholics</company>

 <street>2112 North Street</street>

 <city>Cary</city>

 <state>NC</state>

 <postalCode>27522</postalCode>

 </shipTo>

 <order>

 <item sku=\"22211\" quantity=\"40\">

 <description>Bunny, Dark Chocolate,

Large</description>

 </item>

 </order>

 </po>";

TextMessage message = session.createTextMessage();

message.setText(purchaseOrder);

sender.send(message);

Example: SOAP and WSDL

With the SOAP protocol [SOAP 1.1] and WSDL service description [WSDL 1.1], when using
document-style SOAP messages, the SOAP message is an example of this pattern. The SOAP
message body is an XML document (or some kind of data structure that has been converted into
an XML document), and the SOAP message transmits that document from the sender (e.g., client)
to the receiver (e.g., server).

When using RPC-style SOAP messages, the response message is an example of this pattern. With
this usage, the SOAP message body (an XML document) contains the return value from the
method that was invoked.

This example from the SOAP spec returns the answer from invoking the GetLastTradePrice
method:

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <SOAP-ENV:Body>

 <m:GetLastTradePriceResponse xmlns:m="Some-URI">

 <Price>34.5</Price>

 </m:GetLastTradePriceResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Related patterns: Command Message, Remote Procedure Invocation, Event Message, File Transfer,
Guaranteed Delivery, Message, Message Expiration, Messaging, Point-to-Point Channel,
Publish-Subscribe Channel, Request-Reply, Shared Database

Event Message

Several applications would like to use event-notification to coordinate their actions, and would like to use Messaging

to communicate those events.

How can messaging be used to transmit events from one application to another?

Sometimes an event occurs in one object that another object needs to know about. The classic example is a model that

changes its state and must notify its views so that they can redraw themselves. Such change notification can also be

useful in distributed systems. For example, in a B2B system, one business may need to notify others of price changes

or a whole new product catalog.

A process can use Remote Procedure Invocation to notify other applications of change events, but that requires that the

receiver accept the event immediately, even if it doesn’t want events right now. RPC also requires that the announcing

process know every listener process and invoke an RPC on each listener.

The Observer pattern [GoF] describes how to design a subject that announces events and observers that consume
events. A subject notifies an observer of an event by calling the observer’s Update() method. Update() can be

implemented as an RPC, but that would have all of RPC’s shortcomings.

It would be better to send the event notification asynchronously, as a Message. This way, the subject can send the

notification when it’s ready and each observer can receive the notification if and when it’s ready.

Use an Event Message for reliable, asynchronous event notification between applications.

When a subject has an event to announce, it will create an event object, wrap it in a message, and send it on a channel.

The observer will receive the event message, get the event, and process it. Messaging does not change the event

notification, just makes sure that the notification gets to the observer.

A Event Message can be any kind of message in the messaging system. In Java, an event can be an object or data such
as an XML document. Thus they can be transmitted through JMS as an ObjectMessage, TextMessage, etc. In .NET,

an event message is a Message with the event stored in it.

The difference between an Event Message and a Document Message is a matter of timing and content. An event’s

contents is typically less important. Many events are empty; their mere occurrance tells the observer to react. An

event’s timing is very important; the subject should issue an event as soon as a change occurs, and the observer should

process it quickly while it’s still relevant. Guaranteed Delivery is usually not very helpful with events because they’re

frequent and need to be delivered quickly. Message Expiration can be very helpful to make sure that an event is

processed quickly or not at all.

Our B2B example could use Event Messages, Document Messages, or a combination of the two. If a message says that

the price for computer disk drives has changed, that’s an event. If the message provided information about the disk

drive, including its new price, that’s a document being sent as an event. Another message that announces the new

catalog and its URL is an event, whereas a similar message that actually contains the new catalog is an event that

contains a document.

Which is better? The Observer pattern describes this as a trade-off between a push model and a pull model. The push

model sends information about the change as part of the update, whereas the pull model sends minimal information
and observers that want more information request it by sending GetState() to the subject. The two models relate to

messaging like this:

Push model – The message is a combined document/event message; the message’s delivery announces that the state
has occurred and the message’s contents are the new state. This is more efficient if all observers want these details, but

otherwise can be the worst of both worlds: A large message that is sent frequently and often ignored by many

observers.

Pull model – There are three messages:

• Update – An Event Message that notifies the observer of the event.

• State Request – A Command Message an interested observer uses to request details from the subject.

• State Reply – A Document Message the subject uses to send the details to the observer.

The advantage of the pull model is that the update messages are small, only interested observers request details, and

potentially each interested observer can request the details it specifically is interested in. The disadvantage is the

channels needed and traffic caused by three messages instead of one.

For more details on how to implement Observer using messaging, see JMS Publish/Subscribe Example.

There is usually no reason to limit an event message to a single receiver via a Point-to-Point Channel; the message is

usually broadcast via a Publish-Subscribe Channel so that all interested processes receive notification. Whereas a

Document Message needs to be consumed so that the document is not lost, a receiver of Event Messages can often

ignore the messages when it’s too busy to process them, so the subscribers can often be non-durable (not Durable

Subscribers). Event Message is a key part of implementing the Observer pattern using messaging.

Related patterns: Command Message, Document Message, Durable Subscriber, Remote Procedure Invocation,
Guaranteed Delivery, Message, Message Expiration, Messaging, JMS Publish/Subscribe Example, Point-to-Point

Channel, Publish-Subscribe Channel

Request-Reply

When two applications communicate via Messaging, the communication is one-way. The
applications may want a two-way conversation.

When an application sends a message, how can it get a response from the receiver?

Messaging provides one-way communication between applications. Messages travel on a Message
Channel in one direction, from the sender to the receiver. This asynchrnous transmission makes
the delivery more reliable and decouples the sender from the receiver.

The problem is that communication between components often needs to be two-way. When a
program calls a function, it receives a return value. When it executes a query, it receives query
results. When one component notifies another of a change, it may want to receive an
acknowledgement.

How can messaging be two-way?

Perhaps a sender and receiver could share a message simultaneously. Then each application
could add information to the message for the other to consume. But that is not how messaging
works. A message is first sent, then received, such that the sender and receiver cannot both access
the message at the same time.

Perhaps the sender could keep a reference to the message. Then, once the receiver placed its
response into the message, the sender could pull the message back. This may work for notes
clipped to a clothesline, but it is not how a Message Channel works. A channel transmits messages
in one direction.

What is needed is a two-way message on a two-way channel.

Send a pair of Request-Reply messages, each on its own channel.

Request-Reply has two participants:

1. Requestor – Sends a request message and waits for a reply message.

2. Replier – Receives the request message and responds with a reply message.

The request channel can be a Point-to-Point Channel or a Publish-Subscribe Channel. The difference
is whether the request should be broadcast to all interested parties or should only be processed
by a single consumer. The reply channel, on the other hand, is almost always point-to-point,
because it usually makes no sense to broadcast replies–they should only be returned to the
requestor.

When a caller performs a Remote Procedure Invocation, the caller's thread must block while it waits
for the response. With Request-Reply, the requestor has two approaches for receiving the reply:

1. Synchronous Block – A single thread in the caller sends the request message, blocks (as a Polling Consumer)
to wait for the reply message, then processes the reply. This is simple to implement, but if the requestor

crashes, it will have difficulty re-establishing the blocked thread. The request thread awaiting the response

implies that there is only one outstanding request, or that the reply channel for this request is private for this

thread.

2. Asynchronous Callback – One thread in the caller sends the request message and sets up a callback for the
reply. A separate thread listens for reply messages. When a reply message arrives, the reply thread invokes

the appropriate callback, which re-establishes the caller's context and processes the reply. This approach

enables multiple outstanding requests to share a single reply channel, and a single reply thread to process

replies for multiple request threads. If the requestor crashes, it can recover by simply restarting the reply

thread. An added complexity, however, is the callback mechanism that must re-establish the caller's context.

By itself, two applications sending requests and replies to each other are not very helpful. What is
interesting is what the two messages represent.

1. Messaging RPC – This is how to implement Remote Procedure Invocation using messaging. The
request is a Command Message that describes the function the replier should invoke. The reply is a

Document Message that contains the function's return value or exception.

2. Messaging Query – This is how to perform a remote query using messaging. The request is a
Command Message containing the query, and the reply is the results of the query, perhaps a Message

Sequence.

3. Notify/Acknowledge – This provides for event notfication with acknowledgement using messaging.
The request is an Event Message that provides notification and the reply is a Document Message

acknowledging the notification. The acknowledgement may itself be another request, one seeking

details about the event.

The request is like a method call. As such, the reply is one of three possibilities:

1. Void – Simply notifies the caller that the method has finished so that the caller can proceed.

2. Result value – A single object that is the method's return value.

3. Exception – A single exception object indicating that the method aborted before completing

successfully, and indicating why.

The request should contain a Return Address to tell the replier where to send the reply. The reply
should contain a Correlation Identifier that specifies which request this reply is for.

Example: SOAP 1.1 Messages

SOAP messages come in Request-Reply pairs. A SOAP request message indicates a service the
sender wishes to invoke on the receiver, whereas a SOAP response message contains the result of

the service invocation. The response message either contains a result value or a fault–the SOAP
equivalent of an exception. [SOAP 1.1]

Example: SOAP 1.2 Response Message Exchange Pattern

Whereas SOAP 1.1 has response messages and they are loosely described, SOAP 1.2 introduces
an explicit Request-Response Message Exchange Pattern. [SOAP 1.2 Part 2] This patterns
describes a separate, potentially asynchronous response to a SOAP request.

Example: JMS Requestor Objects

JMS includes a couple of features that can be used to implement Request-Reply.

A TemporaryQueue is a Queue that can be created programatically and that only lasts as long as the
Connection used to create it. Only MessageConsumers created by the same connection can read
from the queue, so effectively it is private to the connection. [JMS11, pp.61-62]

How are MessageProducers going to know about this newly created, private queue? A requestor
will create a temporary queue and specify it in the reply-to property of a request message. (See
Return Address.) A well-behaved replier will send the reply back on the specified queue, one that
the replier wouldn't even know about if it weren't a property of the request message. This is a
simple approach the requestor can use to make sure that the replies always come back to it.

The downside with temporary queues is that when their Connection closes, the queue and any
messages in it are deleted. Likewise, temporary queues cannot provide Guaranteed Delivery; if the
messaging system crashes, then the connection is lost, so the queue and its messages are lost.

JMS also provides QueueRequestor, a simple class for sending requests and receiving replies. A
requestor contains a QueueSender for sending requests and a QueueReceiver for receiving replies.
Each requestor creates its own temporary queue for receiving replies and specifies that in the
request's reply-to property. [JMS11, p.78] A requestor makes sending a request and receiving a
reply very simple:

QueueConnection connection = // obtain the connection

Queue requestQueue = // obtain the queue

Message request = // create the request message

QueueSession session = connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

QueueRequestor requestor = new QueueRequestor(session, requestQueue);

Message reply = requestor.request(request);

One method–request–sends the request message and blocks until it receives the reply message.

TemporaryQueue, used by QueueRequestor, is a Point-to-Point Channel. Its Publish-Subscribe Channel
equivalents are TemporaryTopic and TopicRequestor.

Related patterns: Command Message, Correlation Identifier, Document Message, Remote Procedure
Invocation, Event Message, Guaranteed Delivery, Message, Message Channel, Message Sequence,
Messaging, Point-to-Point Channel, Polling Consumer, Publish-Subscribe Channel, Return Address

Return Address

My application is using Messaging to perform a Request-Reply.

How does a replier know where to send the reply?

Messages are often thought of as completely independent, such that any sender sends a message
on any channel whenever it likes. However, messages are often associated, such as Request-Reply
pairs, two messages which appear independent but where the reply message has a one-to-one
correspondence with the request message that caused it. Thus the replier that processes the
request message cannot simply send the reply message on any channel it wishes, it must send it
on the channel the requestor expects the reply on.

Each receiver could automatically know which channel to send replies on, but hard coding such
assumptions makes the software less flexible and more difficult to maintain. Furthermore, a
single replier could be processing calls from several different requestors, so the reply channel is
not the same for every message; it depends on what requestor sent the request message.

Uncertain Where to Send Replies

A requestor potentially may not want a reply sent back to itself. Rather, it may have an associated
callback processor to process replies, and the callback processor may monitor a different channel
than the requestor does (or the requestor may not monitor any channels at all). The requestor
could have multiple callback processors such that replies for different requests from the same
requestor should be sent to different processors.

The reply channel will not necessarily transmit replies back to the requestor; it will transmit them
to whomever the requestor wants to process the replies, because it’s listening to the channel the
requestor specified. So knowing what requestor sent a request or what channel it was sent on
does not necessarily tell the replier what channel to send the reply on. Even if it did, the replier
would still have to infer which reply channel to use for a particular requestor or request channel.
It’s easier for the request to explicitly specify which reply channel to use.

What is needed is a way for the requestor to tell the replier where and how to send back a reply.

The request message should contain a Return Address that indicates where to send the reply
message.

This way, the replier does not need to know where to send the reply, it can just ask the request. If
different messages to the same replier require replies to different places, the replier knows where
to send the reply for each request. This encapsulates the knowledge of what channels to use for
requests and replies within the requestor so those decisions do not have to be hard coded within
the replier. A Return Address is put in the header of a message because it’s not part of the data
being transmitted.

A message’s Return Address is analogous to the reply-to field in an e-mail message. The “reply-to”
e-mail address is usually the same as the “from” address, but the sender can set it to a different
address to receive replies in a different account than the one used to send the original message.

When the reply is sent back the channel indicated by the Return Address, it may also need a
Correlation Identifier. The Return Address tells the receiver what channel to put the reply message
on; the correlation identifier tells the sender which request a reply is for.

Example: JMS Reply-To Property

JMS messages have a predefined property for Return Addresses, JMSReplyTo. Its type is a
Destination (a Topic or Queue), rather than just a string for the destination name, which ensures
that the destination (e.g., Message Channel) really exists, at least when the request is sent. [JMS11,
p.33], [Monson-Haefel, pp.192-193]

A sender that wishes to specify a reply channel that is a queue would do so like this:

Queue requestQueue = // Specify the request destination

Queue replyQueue = // Specify the reply destination

Message requestMessage = // Create the request message

requestMessage.setJMSReplyTo(replyQueue);

MessageProducer requestSender =

 session.createProducer(requestQueue);

requestSender.send(requestMessage);

Then the receiver would send the reply message like this:

Queue requestQueue = // Specify the request destination

MessageConsumer requestReceiver =

 session.createConsumer(requestQueue);

Message requestMessage = requestReceiver.receive();

Message replyMessage = // Create the reply message

Destination replyQueue = requestMessage.getJMSReplyTo();

MessageProducer replySender = session.createProducer(replyQueue);

replySender.send(replyMessage);

Example: .NET Response-Queue Property

.NET messages also have a predefined property for Return Addresses, ResponseQueue. Its type is a
MessageQueue, the queue that the application should send a response message to. [SysMsg],
[Dickman, p.122]

Example: Web Services Request/Response

SOAP 1.2 incorporates the Request-Response Message Exchange Pattern [SOAP 1.2 Part 2], but
the address to send the reply to is unspecified and therefore implied. This SOAP pattern will
need to support an optional Return Address to truely make SOAP messages asynchronous and
delink the responder from the requestor.

The emerging WS-Addressing standard helps address this issue by specifying how to identify a
web service endpoint and what XML elements to use. Such an address can be used in a SOAP
message to specify a Return Address. See the discussion of WS-Addressing in Emerging Standards
and Futures in Enterprise Integration.

Related patterns: Correlation Identifier, Emerging Standards and Futures in Enterprise Integration,
Message Channel, Messaging, Request-Reply

Correlation Identifier

My application is using Messaging to perform a Request-Reply and has received a reply message.

How does a requestor that has received a reply know which request this is the reply for?

When one process invokes another via Remote Procedure Invocation, the call is synchronous, so
there is no confusion about which call produced a given result. But Messaging is asynchronous, so
from the caller’s point of view, it makes the call, then sometime later a result appears. The caller
may not even remember making the request, or may have made so many requests that it no
longer knows which one this is the result for. With confusion like this, when the caller finally gets
the result, it may not know what to do with it, which defeats the purpose of making the call in
the first place.

Cannot Match Reply to Request

There are a couple of approaches the caller can use to avoid this confusion. It can make just one
call at a time, waiting for a reply before sending another request, so there is at most one
outstanding request at any given time. This will greatly slow processing throughput, however.
The call could assume that it’ll receive replies in the same order it sent requests, but messaging
does not guarantee what order messages are delivered in and all requests may not take the same
amount of time to process, so the caller’s assumption would be faulty. The caller could design its
requests such that they do not need replies, but this constraint would make messaging useless for
many purposes.

What the caller needs is for the reply message to have a pointer or reference to the request
message, but messages do not exist in a stable memory space such that they can be referenced by

variables. However, a message could have some sort of foreign key, a unique identifier like the
key for a row in a relational database table. Such a unique identifier could be used to identify the
message from other messages, clients that use the message, etc.

Each reply message should contain a Correlation Identifier, a unique identifier that indicates
which request message this reply is for.

There are six parts to Correlation Identifier:

1. Requestor — An application that performs a business task by sending a request and
waiting for a reply.

2. Replier — Another application that receives the request, fulfills it, then sends the reply. It
gets the request ID from the request and stores it as the correlation ID in the reply.

3. Request — A Message sent from the requestor to the replier containing a request ID.
4. Reply — A Message sent from the replier to the requestor containing a correlation ID.
5. Request ID — A token in the request that uniquely identifies the request.
6. Correlation ID — A token in the reply that has the same value as the request ID in the

request.

This is how a Correlation Identifier works: When the requestor creates a request message, it assigns
the request a request ID—an identifier that is different from those for all other currently
outstanding requests (e.g., requests that do not yet have replies). When the replier processes the
request, it saves the request ID and adds that ID to the reply as a correlation ID. When the
requestor processes the reply, it uses the correlation ID to know which request the reply is for.
This is called a correlation identifier because of the way the caller uses the identifier to correlate
(e.g., match; show the relationship) each reply to the request that caused it.

As is often the case with messaging, the requestor and replier must agree on several details. They
must agree on the name and type of the request ID property, and they must agree on the name
and type of the correlation ID property. Likewise, the request and reply message formats must
define those properties or allow them to be added as custom properties. For example, if the
requestor stores the request ID in a first-level XML element named request_id and the value is an

integer, the replier has to know this so that it can find the request ID value and process it
properly. The request ID value and correlation ID value are usually of the same type; if not, the
requestor has to know how the replier will convert the request ID to the reply ID.

This pattern is a simpler, messaging-specific version of the Asynchronous Completion Token
pattern. [POSA2] The requestor is the Initiator, the replier is the Service, the consumer in the
requestor that processes the reply is the Completion Handler, and the Correlation Identifier that
consumer uses to match the reply to the request is the Asynchronous Completion Token.

A correlation ID (and also the request ID) is usually put in the header of a message rather than
the body. The ID is not part of the command or data the requestor is trying to communicate to the
replier. In fact, the replier does not really use the ID at all; it just saves the ID from the request
and adds it to the reply for the requestor’s benefit. Since the message body is the content being
transmitted between the two systems, and the ID is not part of that, the ID goes in the header.

The gist of the pattern is that the reply message contains a token (the correlation ID) that
identifies the corresponding request (via its request ID). There are several different approaches
for achieving this.

The simplest approach is for each request to contain a unique ID, such as a message ID, and for
the response's correlation ID to be the request's unique ID. This relates the reply to its
corresponding request. However, when the requestor is trying to process the reply, knowing the
request message often isn't very interesting. What the requestor really wants is a reminder of
what business task caused it to send the request in the first place, so that the requestor can
complete the businees task using the data in the reply.

The business task, such as needing to execute a stock trade or ship a purchase order, probably has
its own unique business object identifier (such as an order ID), so that business task’s unique ID
can be used as the request-reply correlation ID. Then when the requestor gets the reply and its
correlation ID, it can bypass the request message and go straight to the business object whose
task caused the request in the first place. In this case, rather than use the messages’ built-in
request message ID and reply correlation ID properties, the requestor and replier should use a
custom business object ID property in the request and the reply that identifies the business object
whose task this request-reply message pair is performing.

A compromise approach is for the requestor to keep a map of request ID's and business object
ID's. This is especially useful when the requestor wants to keep the object ID's private, or when
the requestor has no control over the replier's implementation and can only depend on the replier
copying the request's message ID into the reply's correlation ID. In this case, when the requestor
gets the reply, it looks up the correlation ID in the map to get the business object ID, then uses
that to resume performing the business task using the reply data.

Messages have separate message ID and correlation ID properties so that request-reply message
pairs can be chained. This occurs when a request causes a reply, and the reply is in turn another
request that causes another reply, and so on. A message's message ID uniquely identifies the

request it represents; if the message also has a correlation ID, then the message is also a reply for
another request message, as identified by the correlation ID.

Request-Reply Chaining

Chaining is only useful if an application wants to retrace the path of messages from the latest
reply back to the original request. Often all the application wants to know is the original request,
regardless of how many reply-steps occurred in between. In this situation, once a message has a
non-null correlation ID, it is a reply and all subsequent replies caused by it should also use the
same correlation ID.

Correlation Identifier is a simple version of an Asynchronous Completion Token [POSA2], where
the token is simply a primitive value. Both help a caller to process the responses generated by
asynchronous requests.

While a Correlation Identifier is used to match a reply with its request, the request may also have a
Return Address that states what channel to put the reply on. Whereas a correlation identifier is
used to match a reply message with its request, a Message Sequence’s identifiers are used to
specify a message’s position within a series of messages from the same sender.

Example: JMS Correlation-ID Property

JMS messages have a predefined property for correlation identifiers, JMSCorrelationID, which is
typically used in conjunction with another predefined property, JMSMessageID. [JMS11, p.32],
[Monson-Haefel, pp.194-195] A reply message’s correlation ID is set from the request’s message
ID like this:

Message requestMessage = // Get the request message

Message replyMessage = // Create the reply message

String requestID = requestMessage.getJMSMessageID();

replyMessage.setJMSCorrelationID(requestID);

Example: .NET Correlation-Id Property

Each Message in .NET has a CorrelationId property, a string in an acknowledgement message
that is usually set to the Id of the original message. MessageQueue also has a special peek and
receive methods, PeekByCorrelationId(string) and ReceiveByCorrelationId(string), for peeking

at and consuming the message on the queue (if any) with the specified correlation ID. (See
Selective Consumer [SysMsg], [Dickman, pp.147-149]

Example: Web Services Request/Response

Web services standards, as of SOAP 1.1 [SOAP 1.1], do not provide very good support for
asynchronous messaging, but SOAP 1.2 starts to plan for it. SOAP 1.2 incorporates the
Request-Response Message Exchange Pattern [SOAP 1.2 Part 2], a basic part of asynchronous
SOAP messaging. However, the request/response pattern does not mandate support for
"multiple ongoing requests," so it does not define a standard Correlation Identifier field, even an
optional one.

As a practical matter, service requestors often do require multiple outstanding requests. "Web
Services Architecture Usage Scenarios" [WSAUS] discusses several different asynchronous web
services scenarios. Four of them—Request/Response, Remote Procedure Call (where the
transport protocol does not support [synchronous] request/response directly), Multiple
Asynchronous Responses, and Asynchronous Messaging—use message-id and response-to fields
in the SOAP header to correlate a response to its request. This is the request/response example:

Example: SOAP request message containing a message identifier

<?xml version="1.0" ?>

<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope">

 <env:Header>

 <n:MsgHeader xmlns:n="http://example.org/requestresponse">

 <n:MessageId>uuid:09233523-345b-4351-b623-5dsf35sgs5d6</n:MessageId>

 </n:MsgHeader>

 </env:Header>

 <env:Body>

 </env:Body>

</env:Envelope>

Example: SOAP response message containing correlation to original request

<?xml version="1.0" ?>

<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope">

 <env:Header>

 <n:MsgHeader xmlns:n="http://example.org/requestresponse">

 <n:MessageId>uuid:09233523-567b-2891-b623-9dke28yod7m9</n:MessageId>

 <n:ResponseTo>uuid:09233523-345b-4351-b623-5dsf35sgs5d6</n:ResponseTo>

 </n:MsgHeader>

 </env:Header>

 <env:Body>

 </env:Body>

</env:Envelope>

Like the JMS and .NET examples, in this SOAP example, the request message contains a unique
message identifier, and the response message contains a response to (e.g., a correlation ID) field
whose value is the message identifier of the request message.

Related patterns: Remote Procedure Invocation, Message, Selective Consumer, Message Sequence,
Messaging, Request-Reply, Return Address

Message Sequence

My application needs to send a huge amount of data to another process, more than may fit in a
single message. Or my application has made a request whose reply contains too much data for a
single message.

How can messaging transmit an arbitrarily large amount of data?

It’s nice to think that messages can be arbitrarily large, but there are practical limits to how much
data a single message can hold. Some messaging implementations place an absolute limit on how
big a message can be. Other implementations allow messages to get quite big, but large messages
nevertheless hurt performance. Even if the messaging implementation allows large messages, the
message producer or consumer may place a limit on the amount of data it can process at once.
For example, many COBOL- and mainframe-based systems will only consume or produce data in
32 Kb chunks.

So how do you get around this? One approach is to limit your application to never need more
data that what the messaging layer can handle. This is an arbitrary limit, though, which can
prevent your application from producing the desired functionality. If the large amount of data is
the result of a request, the caller could issue multiple requests, one for each result chunk, but that
assumes the caller even knows how many result chunks will be needed. The receiver could listen
for data chunks until there are not anymore (but how does it know there are not anymore?), then
try to figure out how to reassemble the chunks into the original, large piece of data, but that
would be error-prone.

Inspiration comes from the way a mail order company sometimes ships an order in multiple
boxes. If there are three boxes, the shipper will mark them as “1 of 3,” “2 of 3,” and “3 of 3” so
that the receiver will know which ones he’s received and whether he has all of them. The trick is
to apply the same technique to messaging.

Whenever a large set of data may need to be broken into message-size chunks, send the data as
a Message Sequence and mark each message with sequence identification fields.

The three Message Sequence identification fields are:

1. Sequence identifier – Distinguishes this cluster of messages from others.

2. Position identifier – Uniquely identifies and sequentially orders each message in a sequence.

3. Size or End indicator – Specifies the number of messages in the cluster, or marks the last message in the

cluster (whose position identifier then specifies the size of the cluster).

The sequences are typically designed such that each message in a sequence indicates the total size
of the sequence, e.g. the number of messages in that sequence. As an alternative, you can design
the sequences such that each message indicates whether it is the last message in that sequence.

Message Sequence with End Indicator

Let’s say a set of data needs to be sent as a cluster of three messages. The sequence identifier of
the three-message cluster will be some unique ID. The position identifier for each message will be
different—either 1, 2, or 3 (assuming that numbering starts from 1, not 0). If the sender knows the
total number of messages from the start, the sequence size for each message is 3. If the sender
does not know the total number of messages until it runs out of data to send (e.g., the sender is
streaming the data), each message except the last will have a “sequence end” flag that is false;
when the sender is ready to send the final message in the sequence, it will set that message’s
sequence end flag is true. Either way, the position identifiers and sequence size/end indicator
will give the receiver enough information to reassemble the parts back into the whole, even if the
parts are not received in sequential order.

If the receiver expects a Message Sequence, then every message sent to it should be sent as part of a
sequence, even if it is only a sequence of one. Otherwise, when a single-part message is sent
without the sequence identification fields, the receiver may become confused by the missing
fields and may conclude that the message is invalid (see Invalid Message Channel).

If a receiver gets some of the messages in a sequence but never does get all of them, it should
reroute the ones it did receive to the Invalid Message Channel.

An application may wish to use a Transactional Client for sending and receiving sequences. The
sender can send all of the messages in a sequence using a single transaction. This way, none of
the messages will be delivered until all of them have been sent. Likewise, a receiver may wish to
use a single transaction to receive the messages so that it does not truly consume any of the
messages until it receives all of them. If any of the messages in the sequence are missing, the
receiver can choose to rollback the transaction so that the messages can be consumed later. In
many messaging system implementations, if a sequence of messages are sent in one transaction,
they will be received in the order they are sent, which simplifies the receiver's job of putting the
data back together.

When the Message Sequence is the reply message in a Request-Reply, the sequence identifier and the
Correlation Identifier are usually the same thing. They would be separate if the application sending
the request expected multiple responses to the same request and one or more of the responses
could be in multiple parts. When only one response is expected, then uniquely identifying the
response and its sequence is permissible, but redundant.

Message Sequence tends not to be compatible with Competing Consumers nor Message Dispatcher. If
different consumers/performers receive different messages in a sequence, none of the receivers
will be able to reassemble the original data without exchanging message contents with each other.
Thus a message sequence should be transmitted either via a Message Channel with a single
consumer.

An alternative to Message Sequence is to use a Claim Check. Rather than transmitting a large
document between two applications, if the applications both have access to a common database
or file system, store the document and just transmit the receipt in a single message.

Example: Large Document Transfer

Imagine a sender needs to send an extremely large document to a receiver, so large that it will not
fit within a single message, or is impractical to send all at once. Then break the large document
into parts, each of which can be sent as a message. Each message needs to indicate its position in
the sequence and indicate how many messages total to expect.

For example, the maximum size of an MSMQ message is 4 MB. [Dickman, pp.169-172] discusses
how to send a multipart message sequence in MSMQ.

Example: Multi-Item Query

Consider a query that requests a list of all books by a certain author. Because this could be a very
large list, the messaging design might choose to return each match as a separate message. Then
each message needs to indicate the query this reply is for, the message’s position in the sequence,
and how many messages total to expect.

Example: Distributed Query

Consider a query that is performed in parts by multiple receivers. If the parts have some order to
them, this will need to be indicated in the reply messages so that the complete reply can be
assembled properly. Each receiver will need to know its position in the overall order and will
need to indicate that position is the reply's message sequence.

Example: JMS and .NET

Neither JMS nor .NET have built-in properties for supporting message sequences. Therefore,
messaging application must implement their own sequence fields. In JMS, an application can
define its own properties in the header, so that is an option. .NET does not provide
application-defined properties in the header. The fields could also be defined in the message
body. Keep in mind that if a receiver of the sequence needs to filter for messages based on their
sequence, such filtering is much simpler to do if the field is stored in the header rather than the
body.

Example: Web Services Architecture Usage Scenarios

Web services standards currently do not provide very good support for asynchronous messaging,
but the W3C has started to think about how it could. "Web Services Architecture Usage
Scenarios" [WSAUS] discusses several different asynchronous web services scenarios. One of
them—Multiple Asynchronous Responses—use message-id and response-to fields in the SOAP
header to correlate a responses to their request, and sequence-number and total-in-sequence
fields in the body to sequentially identify the responses. This is the multiple responses example:

Example: SOAP request message containing a message identifier

<?xml version="1.0" ?>

<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope">

 <env:Header>

 <n:MsgHeader xmlns:n="http://example.org/requestresponse">

 <n:MessageId>uuid:09233523-345b-4351-b623-5dsf35sgs5d6</n:MessageId>

 </n:MsgHeader>

 </env:Header>

 <env:Body>

 </env:Body>

</env:Envelope>

Example: First SOAP response message containing sequencing and correlation to original request

<?xml version="1.0" ?>

<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope">

 <env:Header>

 <n:MsgHeader xmlns:n="http://example.org/requestresponse">

 <!-- MessageId will be unique for each response message -->

 <!-- ResponseTo will be constant for each response message in the sequence-->

 <n:MessageId>uuid:09233523-567b-2891-b623-9dke28yod7m9</n:MessageId>

 <n:ResponseTo>uuid:09233523-345b-4351-b623-5dsf35sgs5d6</n:ResponseTo>

 </n:MsgHeader>

 <s:Sequence xmlns:s="http://example.org/sequence">

 <s:SequenceNumber>1</s:SequenceNumber>

 <s:TotalInSequence>5</s:TotalInSequence>

 </s:Sequence>

 </env:Header>

 <env:Body>

 </env:Body>

</env:Envelope>

Example: Final SOAP response message containing sequencing and correlation to original
request

<?xml version="1.0" ?>

<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope">

 <env:Header>

 <n:MsgHeader xmlns:n="http://example.org/requestresponse">

 <!-- MessageId will be unique for each response message -->

 <!-- ResponseTo will be constant for each response message in the sequence-->

 <n:MessageId>uuid:40195729-sj20-pso3-1092-p20dj28rk104</n:MessageId>

 <n:ResponseTo>uuid:09233523-345b-4351-b623-5dsf35sgs5d6</n:ResponseTo>

 </n:MsgHeader>

 <s:Sequence xmlns:s="http://example.org/sequence">

 <s:SequenceNumber>5</s:SequenceNumber>

 <s:TotalInSequence>5</s:TotalInSequence>

 </s:Sequence>

 </env:Header>

 <env:Body>

 </env:Body>

</env:Envelope>

The message-id in the header is used as the sequence identifier in the responses. The
sequence-number and total-in-sequence in each response are a position identifier and side
indicator, respectively.

Related patterns: Competing Consumers, Correlation Identifier, Invalid Message Channel, Message
Channel, Message Dispatcher, Request-Reply, Claim Check, Transactional Client

Message Expiration

My application is using Messaging. If a Message’s data or request is not received by a certain time,
it is useless and should be ignored.

How can a sender indicate when a message should be considered stale and thus shouldn’t be
processed?

Messaging practically guarantees that the Message will eventually be delivered to the receiver.
What it cannot guarantee is how long the delivery may take. For example, if the network
connecting the sender and receiver is down for a week, then it could take a week to deliver a
message. Messaging is highly reliable, even when the participants (sender, network, and receiver)
are not, but messages can take a very long time to transmit in unreliable circumstances. (For more
details, see Guaranteed Delivery.)

Often, a message’s contents have a practical limit for how long they’re useful. A caller issuing a
stock quote request probably looses interest if it does not receive an answer within a minute or so.
That means the request should not take more than a minute to transmit, but also that the answer
had better transmit back very quickly. A stock quote reply more than a minute or two old is
probably too old and therefore unreliable.

Once the sender sends a message and does not get a reply, it has no way to cancel or recall the
message. Likewise, a receiver could check when a message was sent and reject the message if it’s
too old, but different senders under different circumstances may have different ideas about how
long is too long, so how does the receiver know which messages to reject?

What is needed is a way for the sender to specify the message’s lifetime.

Set the Message Expiration to specify a time limit how long the message is viable.

Once the time for which a message is viable passes, and the message still has not been consumed,
then the message will expire. The messaging system’s consumers will ignore an expired message;
they treat the message as if it where never sent in the first place. Most messaging system
implementations reroute expired messages to the Dead Letter Channel, while others simply
discard expired messages; this may be configurable.

A Message Expiration is like the expiration date on a carton of milk—after that date, you’re not
supposed to drink the milk. If the expiration date passes while the milk is on the grocery store
shelf, the grocer is supposed to pull the milk off the shelf and not sell it. If you end up with a
carton on milk that expires, you’re supposed to pour it out. Likewise, when a message expires,
the messaging system should no longer deliver it. If a receiver nevertheless receives a message
but cannot process it before the expiration, the receiver should throw away the message.

A Message Expiration is a timestamp (date and time) that specifies how long the message will live
or when it will expire. The setting can be specified in relative or absolute terms. An absolute
setting specifies a date and time when the message will expire. A relative setting specifies how
long the message should live before it expires; the messaging system will use the time when the
message is sent to convert the relative setting into an absolute one. The messaging system is
responsible for adjusting the timestamp for receivers in different timezones from the sender, for
adjustments in daylight savings times, and any other issues that can keep two different clocks
from agreeing on what time it is.

The message expiration property has a related property, sent time, which specifies when the
message was sent. A message’s absolute expiration timestamp must be later than its sent
timestamp (or else the message will expire immediately). To avoid this problem, senders usually
specify expiration times relatively, in which case the messaging system calculates the expiration
timestamp by adding the relative timeout to the sent timestamp (expiration time = sent time +
time to live).

When a message expires, the messaging system may simply discard it or may move it to a Dead
Letter Channel. A receiver that finds itself in possession of an expired message should move it to
the Invalid Message Channel. With a Publish-Subscribe Channel, each subscriber gets its own copy of
the message; some copies of a message may reach their subscribers successfully while other
copies of the same message expire before their subscribers consume them. When using
Request-Reply, a reply message with an expiration may not work well—if the reply expires, the
sender of the request will never know whether the request was ever received in the first place. If
reply expirations are used, the request sender has to be designed to handle the case where
expected replies are never received.

Example: JMS Time-To-Live Parameter

Message expiration is what the JMS spec calls “message time-to-live.” [JMS11, p.71], [Hapner,
pp.59-60] JMS messages have a predefined property for message expiration, JMSExpiration, but a
sender should not set it via Message.setJMSExpiration(long) because the JMS provider will
override that setting when the message is sent. Rather, the sender should use its MessageProducer
(QueueSender or TopicPublisher) to set the timeout for all messages it sends; the method for this
setting is MessageProducer.setTimeToLive(long). A sender can also set the time-to-live on an
individual message using the MessageProducer.send(Message message, int deliveryMode, int
priority, long timeToLive) method, where the forth parameter is the time-to-live in milliseconds.
Time-to-live is a relative setting specifying how long after the message is sent it should expire.

Example: .NET Time-To-Be-Received and

Time-To-Reach-Queue Property

A .NET Message has two properties for specifying expiration: TimeToBeReceived and
TimeToReachQueue. The reach queue setting specifies how long the message has to reach its
destination queue, after which the message might sit in the queue indefinitely. The be received
setting specifies how long the message has to be consumed by a receiver, which limits the total
time for transmitting the message to its destination queue plus the amount of time the message
can spend sitting on the destination queue. TimeToBeReceived is equivalent to JMS’s
JMSExpiration property. Both time settings have a value of type System.TimeSpan, a length of time.
[SysMsg], [Dickman, pp.56-58]

Related patterns: Dead Letter Channel, Guaranteed Delivery, Invalid Message Channel, Message,
Messaging, Publish-Subscribe Channel, Request-Reply

Format Indicator

Several applications are communicating via Messages that follow an agreed upon data format,
perhaps an enterprise-wide Canonical Data Model. However, that format may need to change over
time.

How can a message’s data format be designed to allow for possible future changes?

Even when you design a data format that works for all participating applications, future
requirements may change. New applications may be added that have new format requirements,
new data may need to be added to the messages, or developers may find better ways to structure
the same data. Whatever the case, designing a single enterprise data model is difficult enough;
designing one that will never need to change in the future is darn near impossible.

When an enterprise’s data format changes, there would be no problem if all of the applications
change with it. If every application stopped using the old format and started using the new
format, and all did so at exactly the same time, then conversion would be simple. The problem is
that some applications will be converted before others, while some less-used applications may
never be converted at all. Even if all applications could be converted at the same time, all
messages would have to be consumed so that all channels are empty before the conversion could
occur.

Realistically, applications are going to have to be able to support the old format and the new
format simultaneously. To do this, applications will need to be able to tell which messages follow
the old format and which use the new.

One solution might be to use a separate set of channels for the messages with the new format.
That, however, would lead to a huge number of channels, duplication of design, and
configuration complexity as each application has to be configured for an ever-expanding
assortment of channels.

A better solution is for the messages with the new format to share the same channels the
old-format messages have already been using. This means that receivers will need a way to
differentiate messages from the same channel that have different formats. The message must
specify what format it is using. Each message needs a simple way to indicate its format.

Design a data format that includes a Format Indicator, so that the message specifies what
format it is using.

The format indicator enables the sender to tell the receiver the format of the message. This way, a
receiver expecting several possible formats knows which one a message is using and therefore
how to interpret the message’s contents.

There are three main alternatives for implementing a format indicator:

1. Version Number – A number or string that that uniquely identifies the format. Both the
sender and receiver must agree on which format is designated by a particular indicator.

2. Foreign Key – A unique ID—such as a filename, a database row key, a home primary key,
or an Internet URL—that specifies a format document. The sender and receiver must
agree on the mapping of keys to documents, and the format of the schema document.

3. Format Document – A schema that describes the data format. The schema document does
not have to be retrieved via a foreign key or inferred from a version number, it is
embedded in the message. The sender and the receiver must agree on the format of the
schema.

A version number or foreign key can be stored in a header field that the senders and receivers
agree upon. Receivers that are not interested in the format version can ignore the field. A format
document may be too long or complex to store in a header field, in which case the message body
will need to have a format that contains two parts, the schema and the data.

Example: XML

XML documents have examples of all three approaches. One example is an XML declaration, like
this:

<?xml version="1.0"?>

Here, 1.0 is a version number that indicates the document’s conformance to that version of the
XML specification. Another example is the document type declaration, which can take two forms.
It can be an external ID containing a system identifier like this:

<!DOCTYPE greeting SYSTEM "hello.dtd">

The system identifier, hello.dtd, is a foreign key that indicates the file containing the DTD
document that describes this XML document’s format. The declaration can also be included
locally, like this:

<!DOCTYPE greeting [

 <!ELEMENT greeting (#PCDATA)>

]>

The markup declaration, [<!ELEMENT greeting (#PCDATA)>], is a format document, an embedded
schema document that describes the XML’s format. [XML 1.0]

Related patterns: Canonical Data Model, Message

6．Interlude：Simple Messaging

Introduction

So far, we’ve introduced a lot of patterns. We’ve seen the basic Messaging Components, such as
Message Channel, Message, and Message Endpoint. We’ve also seen detailed patterns for Messaging
Channels and for Message Construction.

So how do all of these patterns fit together? How does a developer integrate applications using
these patterns? What does the code look like, and how does it work?

This is the chapter where we really get to see the code. We have two examples:

• Request/Reply — Demonstrates (in Java and .NET/C#) how to use messaging to send a request message and
respond with a reply message.

• Publish/Subscribe — Explores how to use a JMS Topic to implement the Observer pattern.

These two simple examples should get you started on how add messaging to your own
applications.

Request/Reply Example

This is a simple but powerful example, transmitting a request and transmitting back a reply. It
consists of two main classes:

• Requestor — The object that sends the request message and expects to receive the reply message.

• Replier — The object that receives the request message and sends a reply message in response.

These two simple classes sending simple messages illustrate a number of the patterns:

• Message Channel and Point-to-Point Channel — One channel for transmitting the requests, another
for transmitting the replies.

• Document Message — The default type of message, used as both the request and the reply.

• Request-Reply — A pair of messages sent over a pair of channels, allowing the two applications to
have a two-way conversation.

• Return Address — The channel to send the response on.

• Correlation Identifier — The ID of the request that caused this response.

• Datatype Channel — All of the messages on each channel should be of the same type.

• Invalid Message Channel — What happens to messages that aren’t of the right type.

The example code also demostrates a couple of patterns from the Messaging Endpoints chapter
later in the book:

• Polling Consumer — How the requestor consumes reply messages.

• Event-Driven Consumer — How the replier consumes request messages.

While this book is technology-, product-, and language-neutral, code cannot be. So we’ve
choosen two messaging programming platforms to implement this example:

• The JMS API in Java J2EE

• The MSMQ API in Microsoft .NET using C#

The same request/reply example is implemented in both platforms. So choose your favorite
platform as an example of how messaging works. If you’d like to see how messaging works on
the other platform, even if you don’t know how to write code for that platform, you should be
able to figure out how that code works by comparing it to the code in the language you already
know.

Publish/Subscribe Example

This example explores how to implement the Observer pattern using a Publish-Subscribe Channel.
It considers distribution and threading issues and discusses how messaging greatly simplifies
these issues. The example shows how to implement both the push and pull models of notification
and compares the consequences of each. It also explores how to design an adaquate set of
channels needed for a complex enterprise with numerous subjects notifing numerous observers.

The discussion and sample code will illustrate several patterns:

• Publish-Subscribe Channel — The channel that provides publish/subscribe notification.

• Event Message — The message type used to send notifications.

• Request-Reply — The technique used as part of the pull model for an observer to request state from the
subject.

• Command Message — The message type used by an observer to request state from the subject.

• Document Message — The message type used by a subject to send its state to an observer.

• Return Address — Tells the subject how to send the state to the observer.

• Datatype Channel — The main guideline for whether two unrelated subjects can use the same channel to
update the same group of observers.

The example code also demostrates a couple of patterns from the Messaging Endpoints chapter
later in the book:

• Messaging Gateway — How the subject and observer encapsulate the messaging code so that they are not
messaging-specific.

• Event-Driven Consumer — How the observers consume notification messages.

• Durable Subscriber — An observer that does not want to miss notifications, even if the observer is
temporarily disconnected when the notification is sent.

This example is implemented in Java using JMS because JMS supports Publish-Subscribe Channel
as an explicit feature of the API through its Topic interface. .NET does not provide a similar level
of support for using the publish/subscribe semantics in MSMQ; when it does, the techniques in
the JMS example should be readily applicable to .NET programs as well.

JMS Request/Reply Example

This is a simple example of how to use messaging, implemented in JMS [JMS]. It shows how to
implement Request-Reply, where a requestor application sends a request, a replier application
receives the request and returns a reply, and the requestor receives the reply. It also shows how
an invalid message will be rerouted to a special channel.

Components of the Request/Reply Example

This example was developed using JMS 1.1 and run using the J2EE 1.4 reference implementation.

Request/Reply Example

This example consists of two main classes:

1. Requestor — A Message Endpoint that sends a request message and waits to receive a reply message as a
response.

2. Replier — A Message Endpoint that waits to receive the request message; when it does, it responds by

sending the reply message.

The Requestor and the Replier will each run in a separate Java virtual machine (JVM), which is
what makes the communication distributed.

This example assumes that the messaging system has these three queues defined:

1. jms/RequestQueue — The Queue the Requestor uses to send the request message to the Replier.

2. jms/ReplyQueue — The Queue the Replier uses to send the reply message to the Requestor.

3. jms/InvalidMessages — The Queue that the Requestor and Replier move a message to when they receive a

message that they cannot interpret.

Here's how the example works. When the Requestor is started in a command-line window, it
starts and prints output like this:

Sent request

 Time: 1048261736520 ms

 Message ID: ID:_XYZ123_1048261766139_6.2.1.1

 Correl. ID: null

 Reply to: com.sun.jms.Queue: jms/ReplyQueue

 Contents: Hello world.

What this shows is that the Requestor has sent a request message. Notice that this works even
though the Replier isn't even running and therefore cannot receive the request.

When the Replier is started in another command-line window, it starts and prints output like
this:

Received request

 Time: 1048261766790 ms

 Message ID: ID:_XYZ123_1048261766139_6.2.1.1

 Correl. ID: null

 Reply to: com.sun.jms.Queue: jms/ReplyQueue

 Contents: Hello world.

Sent reply

 Time: 1048261766850 ms

 Message ID: ID:_XYZ123_1048261758148_5.2.1.1

 Correl. ID: ID:_XYZ123_1048261766139_6.2.1.1

 Reply to: null

 Contents: Hello world.

This shows that the Replier received the request message and sent a reply message.

There are several items in this output that are interesting to notice. First, notice the request send
and received timestamps; the request was received after it was sent (30270 ms later). Second,
notice that the message ID is the same in both cases, because it's the same message. Third, notice
that the contents, "Hello world," are the same, which is very good because this is the data being
transmitted and it has got to be the same on both sides. (The request in this example is pretty
lame. It is basically a Document Message; a real request would usually be a Command Message.)
Forth, the queue named "jms/ReplyQueue" has been specified in the request message as the
destination for the reply message (an example of the Return Address pattern).

Next, let's compare the output from receiving the request to that for sending the reply. First,
notice the reply was not sent until after the request was received (60 ms after). Second, the
message ID for the reply is different from that for the request; this is because the request and
reply messages are different, separate messages. Third, the contents of the request have been
extracted and added to the reply. Forth, the reply-to destination is unspecified because no reply is

expected (the reply does not use the Return Address pattern). Fifth, the reply's correlation ID is the
same as the request's message ID (the reply does use the Correlation Identifier pattern).

Finally, back in the first window, the requester received the reply:

Received reply

 Time: 1048261737060 ms

 Message ID: ID:_XYZ123_1048261758148_5.2.1.1

 Correl. ID: ID:_XYZ123_1048261766139_6.2.1.1

 Reply to: null

 Contents: Hello world.

This output contains several items of interest. The reply was received after it was sent (30210 ms).
The message ID of the reply was the same when it was received as it was when it was sent, which
proves that it is indeed the same message. The message contents received are the same as those
sent. And the correlation ID tells the requestor which request this reply is for (the Correlation
Identifier pattern).

Notice too that the requestor is designed to simply send a request, receive a reply, and exit. So
having received the reply, the requestor is no longer running. The replier, on the other hand,
doesn't know when it might receive a request, so it never stops running. To stop it, we go to its
command shell window and press the return key, which causes the replier program to exit.

So this is the request/reply example. A request was prepared and sent by the requestor. The
replier received the request and sent a reply. Then the requestor received the reply to its original
request.

Request/Reply Code

First, let's take a look at how the Requestor is implemented:

import javax.jms.Connection;

import javax.jms.Destination;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.MessageConsumer;

import javax.jms.MessageProducer;

import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.NamingException;

public class Requestor {

 private Session session;

 private Destination replyQueue;

 private MessageProducer requestProducer;

 private MessageConsumer replyConsumer;

 private MessageProducer invalidProducer;

 protected Requestor() {

 super();

 }

 public static Requestor newRequestor(Connection connection, String

requestQueueName,

 String replyQueueName, String invalidQueueName)

 throws JMSException, NamingException {

 Requestor requestor = new Requestor();

 requestor.initialize(connection, requestQueueName, replyQueueName,

invalidQueueName);

 return requestor;

 }

 protected void initialize(Connection connection, String requestQueueName,

 String replyQueueName, String invalidQueueName)

 throws NamingException, JMSException {

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 Destination requestQueue =

JndiUtil.getDestination(requestQueueName);

 replyQueue = JndiUtil.getDestination(replyQueueName);

 Destination invalidQueue =

JndiUtil.getDestination(invalidQueueName);

 requestProducer = session.createProducer(requestQueue);

 replyConsumer = session.createConsumer(replyQueue);

 invalidProducer = session.createProducer(invalidQueue);

 }

 public void send() throws JMSException {

 TextMessage requestMessage = session.createTextMessage();

 requestMessage.setText("Hello world.");

 requestMessage.setJMSReplyTo(replyQueue);

 requestProducer.send(requestMessage);

 System.out.println("Sent request");

 System.out.println("\tTime: " + System.currentTimeMillis() + "

ms");

 System.out.println("\tMessage ID: " +

requestMessage.getJMSMessageID());

 System.out.println("\tCorrel. ID: " +

requestMessage.getJMSCorrelationID());

 System.out.println("\tReply to: " +

requestMessage.getJMSReplyTo());

 System.out.println("\tContents: " + requestMessage.getText());

 }

 public void receiveSync() throws JMSException {

 Message msg = replyConsumer.receive();

 if (msg instanceof TextMessage) {

 TextMessage replyMessage = (TextMessage) msg;

 System.out.println("Received reply ");

 System.out.println("\tTime: " +

System.currentTimeMillis() + " ms");

 System.out.println("\tMessage ID: " +

replyMessage.getJMSMessageID());

 System.out.println("\tCorrel. ID: " +

replyMessage.getJMSCorrelationID());

 System.out.println("\tReply to: " +

replyMessage.getJMSReplyTo());

 System.out.println("\tContents: " +

replyMessage.getText());

 } else {

 System.out.println("Invalid message detected");

 System.out.println("\tType: " +

msg.getClass().getName());

 System.out.println("\tTime: " +

System.currentTimeMillis() + " ms");

 System.out.println("\tMessage ID: " +

msg.getJMSMessageID());

 System.out.println("\tCorrel. ID: " +

msg.getJMSCorrelationID());

 System.out.println("\tReply to: " + msg.getJMSReplyTo());

 msg.setJMSCorrelationID(msg.getJMSMessageID());

 invalidProducer.send(msg);

 System.out.println("Sent to invalid message queue");

 System.out.println("\tType: " +

msg.getClass().getName());

 System.out.println("\tTime: " +

System.currentTimeMillis() + " ms");

 System.out.println("\tMessage ID: " +

msg.getJMSMessageID());

 System.out.println("\tCorrel. ID: " +

msg.getJMSCorrelationID());

 System.out.println("\tReply to: " + msg.getJMSReplyTo());

 }

 }

}

An application that wants to send requests and recieve replies could use a requestor to do so. The
application provides its requestor a Connection to the messaging system. It also specifies the JNDI
names of three queues: the request queue, the reply queue, and the invalid message queue. This
is the information the requestor needs to initialize itself.

In initialize, the requestor uses the Connection and queue names to connect to the messaging
system.

• It uses the Connection to create a Session. An application only needs one connection to a
messaging system, but each component in the application that wishes to be able to send
and receive messages independently needs its own session. Two threads cannot share a
single session; they should each use a different session so that the sessions will work
properly.

• It uses the queue names to look up the queues, which are Destinations. The names are
JNDI identifiers; JndiUtil performs the JNDI lookups.

• It creates a MessageProducer for sending messages on the request queue, a
MessageConsumer for receiving messages from the reply queue, and another producer
for moving messages to the invalid message queue.

One thing that the requestor needs to be able to do is send request messages. For that, it
implements the send() method.

• It creates a TextMessage and sets its contents to "Hello world."
• It sets the message's reply-to property to be the reply queue. This is a Return Address that

will tell the replier how to send back the reply.
• It uses the requestProducer to send the message. The producer is connected to the request

queue, so that's the queue the message is sent on.
• It then prints out the details of the message it just sent. This is done after the message is

sent because the message ID is set by the messaging system and is not set until the
message is actually sent.

The other thing the requestor needs to be able to do is receive reply messages. It implements the
receiveSync() method for this purpose.

• It uses its replyConsumer to receive the reply. The consumer is connected to the reply
queue, so it will receive messages from there. It uses the receive() method to get the
message, which synchronously blocks until a message is delivered to the queue and is
read from the queue, so the requestor is a Polling Consumer. Because this receive is
synchronous, the requestor's method is called receiveSync().

• The message should be a TextMessage. If so, the requestor gets the message's contents
and prints out the message's details.

• If the message is not a TextMessage, then the message cannot be processed. Rather than
just discarding the message, the requestor resends it to the invalid message queue.
Resending the message will change its message ID, so before resending it, the requestor
stores its original message ID in its correlation ID (see Correlation Identifier).

In this way, a requestor does everything necessary to send a request, receive a reply, and route
the reply to a special queue if the message does not make any sense.

Next, let's take a look at how the Replier is implemented:

import javax.jms.Connection;

import javax.jms.Destination;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.MessageConsumer;

import javax.jms.MessageListener;

import javax.jms.MessageProducer;

import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.NamingException;

public class Replier implements MessageListener {

 private Session session;

 private MessageProducer invalidProducer;

 protected Replier() {

 super();

 }

 public static Replier newReplier(Connection connection, String

requestQueueName, String invalidQueueName)

 throws JMSException, NamingException {

 Replier replier = new Replier();

 replier.initialize(connection, requestQueueName, invalidQueueName);

 return replier;

 }

 protected void initialize(Connection connection, String requestQueueName,

String invalidQueueName)

 throws NamingException, JMSException {

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 Destination requestQueue =

JndiUtil.getDestination(requestQueueName);

 Destination invalidQueue =

JndiUtil.getDestination(invalidQueueName);

 MessageConsumer requestConsumer =

session.createConsumer(requestQueue);

 MessageListener listener = this;

 requestConsumer.setMessageListener(listener);

 invalidProducer = session.createProducer(invalidQueue);

 }

 public void onMessage(Message message) {

 try {

 if ((message instanceof TextMessage) &&

(message.getJMSReplyTo() != null)) {

 TextMessage requestMessage = (TextMessage) message;

 System.out.println("Received request");

 System.out.println("\tTime: " +

System.currentTimeMillis() + " ms");

 System.out.println("\tMessage ID: " +

requestMessage.getJMSMessageID());

 System.out.println("\tCorrel. ID: " +

requestMessage.getJMSCorrelationID());

 System.out.println("\tReply to: " +

requestMessage.getJMSReplyTo());

 System.out.println("\tContents: " +

requestMessage.getText());

 String contents = requestMessage.getText();

 Destination replyDestination =

message.getJMSReplyTo();

 MessageProducer replyProducer =

session.createProducer(replyDestination);

 TextMessage replyMessage =

session.createTextMessage();

 replyMessage.setText(contents);

 replyMessage.setJMSCorrelationID(requestMessage.getJMSMessageID());

 replyProducer.send(replyMessage);

 System.out.println("Sent reply");

 System.out.println("\tTime: " +

System.currentTimeMillis() + " ms");

 System.out.println("\tMessage ID: " +

replyMessage.getJMSMessageID());

 System.out.println("\tCorrel. ID: " +

replyMessage.getJMSCorrelationID());

 System.out.println("\tReply to: " +

replyMessage.getJMSReplyTo());

 System.out.println("\tContents: " +

replyMessage.getText());

 } else {

 System.out.println("Invalid message detected");

 System.out.println("\tType: " +

message.getClass().getName());

 System.out.println("\tTime: " +

System.currentTimeMillis() + " ms");

 System.out.println("\tMessage ID: " +

message.getJMSMessageID());

 System.out.println("\tCorrel. ID: " +

message.getJMSCorrelationID());

 System.out.println("\tReply to: " +

message.getJMSReplyTo());

 message.setJMSCorrelationID(message.getJMSMessageID());

 invalidProducer.send(message);

 System.out.println("Sent to invalid message queue");

 System.out.println("\tType: " +

message.getClass().getName());

 System.out.println("\tTime: " +

System.currentTimeMillis() + " ms");

 System.out.println("\tMessage ID: " +

message.getJMSMessageID());

 System.out.println("\tCorrel. ID: " +

message.getJMSCorrelationID());

 System.out.println("\tReply to: " +

message.getJMSReplyTo());

 }

 } catch (JMSException e) {

 e.printStackTrace();

 }

 }

}

Replier is what an application might use to receive a request and send a reply. The application
provides its requestor a Connection to the messaging system, as well as the JNDI names of the
request and invalid message queues. (It does not need to specify the name of the reply queue
because, as we'll see, that will be provided by the message's Return Address.) This is the
information the requestor needs to initialize itself.

The replier's initialize code is pretty similar to the requestor's, but there are a couple of
differences:

• One difference is that the replier does not look up the reply queue and create a producer
for it. This is because the replier does not assume it will always send replies on that queue;
rather, as we'll see it will let the request message tell it what queue to send the reply
message on.

• Another difference is that replier is an Event-Driven Consumer, so it implements
MessageListener. When a message is delivered to the request queue, the messaging
system will automatically call the replier's onMessage method.

Once the replier has initialized itself to be a listener on the request queue, there's not much for it
to do but wait for messages. Unlike the requestor, which has to explicitedly poll the reply queue
for messages, the replier is event-driven and so does nothing until the messaging system calls its
onMessage method with a new message. The message will be from the request queue because
initialize created the consumer on the request queue. Once onMessage receives a new message,
it processes the message like this:

• Like with the requestor processing a reply message, the request message is supposed to
be a TextMessage. It is also supposed to specify the queue to send the reply on. If the
message does not meet these requirements, the replier will move the message to the
invalid message queue (same as the requestor).

• If the message meets the requirements: Here is where the replier implements its part of
the Return Address pattern. Remember that the requestor set the request message's
reply-to property to specify the reply queue. The replier now gets that property's value
and uses it to create a MessageProducer on the proper queue. The important part here is
that the replier is not hard-coded to use a particular reply queue; it uses whatever reply
queue each particular request message specifies.

• The replier then creates the reply message. In doing so, it implements the Correlation
Identifier pattern by setting the relpy message's correlation-id property to the same value
as the request message's message-id property.

• The replier then sends out the reply message and displays its details.

Thus a replier does everything necessary to receive a message (presumably a request) and send a
reply.

Invalid Message Example

While we're at it, let's look at an example of the Invalid Message Channel pattern. Remember, one
of the queues we need is one named "jms/InvalidMessages." This exists so that if a JMS client (a
Message Endpoint) receives a message it cannot process, it can move the strange message to a
special channel.

To demonstrate invalid message handling, we have designed an InvalidMessenger class. This
object is specifically designed to send a message on the request channel whose format is incorrect.
Like any channel, the request channel is a Datatype Channel, in that the request receivers expect
the requests to be of a certain format. The invalid messenger simply sends a message of a
different format; when the replier receives the message, it does not recognize the message's
format, and so moves the message to the invalid message queue.

We'll run the Replier in one window and the Invalid Messenger in another window. When the
invalid messenger sends its message, it displays output like this:

Sent invalid message

 Type: com.sun.jms.ObjectMessageImpl

 Time: 1048288516959 ms

 Message ID: ID:_XYZ123_1048288516639_7.2.1.1

 Correl. ID: null

 Reply to: com.sun.jms.Queue: jms/ReplyQueue

This shows that the message is an instance of ObjectMessage (whereas the replier is expecting a
TextMessage). The Replier recieves the invalid message and resends it to the invalid message
queue:

Invalid message detected

 Type: com.sun.jms.ObjectMessageImpl

 Time: 1048288517049 ms

 Message ID: ID:_XYZ123_1048288516639_7.2.1.1

 Correl. ID: null

 Reply to: com.sun.jms.Queue: jms/ReplyQueue

Sent to invalid message queue

 Type: com.sun.jms.ObjectMessageImpl

 Time: 1048288517140 ms

 Message ID: ID:_XYZ123_1048287020267_6.2.1.2

 Correl. ID: ID:_XYZ123_1048288516639_7.2.1.1

 Reply to: com.sun.jms.Queue: jms/ReplyQueue

One insight worth noting is that when the message is moved to the invalid message queue, it is
actually being resent, so it gets a new message ID. Because of this, we apply the Correlation
Identifier pattern; once the replier determines the message to be invalid, it copies the message's
main ID to its correlation ID so as to preserve a record of the message's original ID.

The code that handles this invalid-message processing is in the Replier class shown earlier, in the
onMessage method. Requestor.receiveSync() contains similar invalid-message processing code.

Conclusions

We've seen how to implement two classes, Requestor and Replier (Message Endpoints), that
exchange a request and reply Messages using Request-Reply. The request message uses a Return
Address to specify what queue to send the reply on. The reply messages uses a Correlation
Identifier to specify which request this is a reply for. The Requestor implements a Polling Consumer
to receive replies, whereas the Replier implements an Event-Driven Consumer to receive requests.
The request and reply queues are Datatype Channels; when a consumer receives a message that is
not of the right type, it reroutes the message to the Invalid Message Channel.

.NET Request/Reply Example

This is a simple example of how to use messaging, implemented in .NET [SysMsg] and C#. It
shows how to implement Request-Reply, where a requestor application sends a request, a replier
application receives the request and returns a reply, and the requestor receives the reply. It also
shows how an invalid message will be rerouted to a special channel.

Components of the Request/Reply Example

This example was developed using the Microsoft .NET Framework SDK and run on a Windows
XP computer with MSMQ [MSMQ01] installed.

Request/Reply Example

This example consists of two main classes:

1. Requestor — A Message Endpoint that sends a request message and waits to receive a reply message as a
response.

2. Replier — A Message Endpoint that waits to receive the request message; when it does, it responds by

sending the reply message.

The Requestor and the Replier will each run as a separate .NET program, which is what makes
the communication distributed.

This example assumes that the messaging system has these three queues defined:

1. .\private$\RequestQueue — The MessageQueue the Requestor uses to send the request message to the

Replier.

2. .\private$\ReplyQueue — The MessageQueue the Replier uses to send the reply message to the Requestor.

3. .\private$\InvalidQueue — The MessageQueue that the Requestor and Replier move a message to when

they receive a message that they cannot interpret.

Here's how the example works. When the Requestor is started in a command-line window, it
starts and prints output like this:

Sent request

 Time: 09:11:09.165342

 Message ID: 8b0fc389-f21f-423b-9eaa-c3a881a34808\149

 Correl. ID:

 Reply to: .\private$\ReplyQueue

 Contents: Hello world.

What this shows is that the Requestor has sent a request message. Notice that this works even
though the Replier isn't even running and therefore cannot receive the request.

When the Replier is started in another command-line window, it starts and prints output like
this:

Received request

 Time: 09:11:09.375644

 Message ID: 8b0fc389-f21f-423b-9eaa-c3a881a34808\149

 Correl. ID: <n/a>

 Reply to: FORMATNAME:DIRECT=OS:XYZ123\private$\ReplyQueue

 Contents: Hello world.

Sent reply

 Time: 09:11:09.956480

 Message ID: 8b0fc389-f21f-423b-9eaa-c3a881a34808\150

 Correl. ID: 8b0fc389-f21f-423b-9eaa-c3a881a34808\149

 Reply to: <n/a>

 Contents: Hello world.

This shows that the Replier received the request message and sent a reply message.

There are several items in this output that are interesting to notice. First, notice the request send
and received timestamps; the request was received after it was sent (210302 ms later). Second,
notice that the message ID is the same in both cases, because it's the same message. Third, notice
that the contents, "Hello world," are the same, which is very good because this is the data being
transmitted and it has got to be the same on both sides. (The request in this example is pretty
lame. It is basically a Document Message; a real request would usually be a Command Message.)
Forth, the queue named "jms/ReplyQueue" has been specified in the request message as the
destination for the reply message (an example of the Return Address pattern).

Next, let's compare the output from receiving the request to that for sending the reply. First,
notice the reply was not sent until after the request was received (580836 ms after). Second, the
message ID for the reply is different from that for the request; this is because the request and
reply messages are different, separate messages. Third, the contents of the request have been
extracted and added to the reply. Forth, the reply-to destination is unspecified because no reply is
expected (the reply does not use the Return Address pattern). Fifth, the reply's correlation ID is the
same as the request's message ID (the reply does use the Correlation Identifier pattern).

Finally, back in the first window, the requester received the reply:

Received reply

 Time: 09:11:10.156467

 Message ID: 8b0fc389-f21f-423b-9eaa-c3a881a34808\150

 Correl. ID: 8b0fc389-f21f-423b-9eaa-c3a881a34808\149

 Reply to: <n/a>

 Contents: Hello world.

This output contains several items of interest. The reply was received after it was sent (199987
ms). The message ID of the reply was the same when it was received as it was when it was sent,
which proves that it is indeed the same message. The message contents received are the same as
those sent. And the correlation ID tells the requestor which request this reply is for (the
Correlation Identifier pattern).

Notice too that the requestor is designed to simply send a request, receive a reply, and exit. So
having received the reply, the requestor is no longer running. The replier, on the other hand,
doesn't know when it might receive a request, so it never stops running. To stop it, we go to its
command shell window and press the return key, which causes the replier program to exit.

So this is the request/reply example. A request was prepared and sent by the requestor. The
replier received the request and sent a reply. Then the requestor received the reply to its original
request.

Request/Reply Code

First, let's take a look at how the Requestor is implemented:

using System;

using System.Messaging;

public class Requestor

{

 private MessageQueue requestQueue;

 private MessageQueue replyQueue;

 public Requestor(String requestQueueName, String replyQueueName)

 {

 requestQueue = new MessageQueue(requestQueueName);

 replyQueue = new MessageQueue(replyQueueName);

 replyQueue.MessageReadPropertyFilter.SetAll();

 ((XmlMessageFormatter)replyQueue.Formatter).TargetTypeNames = new

string[]{"System.String,mscorlib"};

 }

 public void Send()

 {

 Message requestMessage = new Message();

 requestMessage.Body = "Hello world.";

 requestMessage.ResponseQueue = replyQueue;

 requestQueue.Send(requestMessage);

 Console.WriteLine("Sent request");

 Console.WriteLine("\tTime: {0}",

DateTime.Now.ToString("HH:mm:ss.ffffff"));

 Console.WriteLine("\tMessage ID: {0}", requestMessage.Id);

 Console.WriteLine("\tCorrel. ID: {0}",

requestMessage.CorrelationId);

 Console.WriteLine("\tReply to: {0}",

requestMessage.ResponseQueue.Path);

 Console.WriteLine("\tContents: {0}",

requestMessage.Body.ToString());

 }

 public void ReceiveSync()

 {

 Message replyMessage = replyQueue.Receive();

 Console.WriteLine("Received reply");

 Console.WriteLine("\tTime: {0}",

DateTime.Now.ToString("HH:mm:ss.ffffff"));

 Console.WriteLine("\tMessage ID: {0}", replyMessage.Id);

 Console.WriteLine("\tCorrel. ID: {0}", replyMessage.CorrelationId);

 Console.WriteLine("\tReply to: {0}", "<n/a>");

 Console.WriteLine("\tContents: {0}",

replyMessage.Body.ToString());

 }

}

An application that wants to send requests and recieve replies could use a requestor to do so. The
application specifies the pathnames of two queues: the request queue and the reply queue. This is
the information the requestor needs to initialize itself.

In the Requestor constructor, the requestor uses the queue names to connect to the messaging
system.

• It uses the queue names to look up the queues, which are MessageQueues. The names are
pathnames to MSMQ resources.

• It sets the reply queue's property filter so that when a message is read from the queue, all
of the message's properties will be read as well. It also sets the queue's formatter to be an
XmlMessageFormatter so that the message contents will be interpreted as strings.

One thing that the requestor needs to be able to do is send request messages. For that, it
implements the Send() method.

• It creates a Message and sets its contents to "Hello world."
• It sets the message's ResponseQueue property to be the reply queue. This is a Return

Address that will tell the replier how to send back the reply.
• It then sends the message to the queue.
• It then prints out the details of the message it just sent. This is done after the message is

sent because the message ID is set by the messaging system and is not set until the
message is actually sent.

The other thing the requestor needs to be able to do is receive reply messages. It implements the
ReceiveSync() method for this purpose.

• It runs the queue's Receive() method to get the message, which synchronously blocks
until a message is delivered to the queue and is read from the queue, so the requestor is a

Polling Consumer. Because this receive is synchronous, the requestor's method is called
ReceiveSync().

• The requestor gets the message's contents and prints out the message's details.

In this way, a requestor does everything necessary to send a request and receive a reply.

Next, let's take a look at how the Replier is implemented:

using System;

using System.Messaging;

class Replier {

 private MessageQueue invalidQueue;

 public Replier(String requestQueueName, String invalidQueueName)

 {

 MessageQueue requestQueue = new MessageQueue(requestQueueName);

 invalidQueue = new MessageQueue(invalidQueueName);

 requestQueue.MessageReadPropertyFilter.SetAll();

 ((XmlMessageFormatter)requestQueue.Formatter).TargetTypeNames = new

string[]{"System.String,mscorlib"};

 requestQueue.ReceiveCompleted += new

ReceiveCompletedEventHandler(OnReceiveCompleted);

 requestQueue.BeginReceive();

 }

 public void OnReceiveCompleted(Object source, ReceiveCompletedEventArgs

asyncResult)

 {

 MessageQueue requestQueue = (MessageQueue)source;

 Message requestMessage =

requestQueue.EndReceive(asyncResult.AsyncResult);

 try

 {

 Console.WriteLine("Received request");

 Console.WriteLine("\tTime: {0}",

DateTime.Now.ToString("HH:mm:ss.ffffff"));

 Console.WriteLine("\tMessage ID: {0}", requestMessage.Id);

 Console.WriteLine("\tCorrel. ID: {0}", "<n/a>");

 Console.WriteLine("\tReply to: {0}",

requestMessage.ResponseQueue.Path);

 Console.WriteLine("\tContents: {0}",

requestMessage.Body.ToString());

 string contents = requestMessage.Body.ToString();

 MessageQueue replyQueue = requestMessage.ResponseQueue;

 Message replyMessage = new Message();

 replyMessage.Body = contents;

 replyMessage.CorrelationId = requestMessage.Id;

 replyQueue.Send(replyMessage);

 Console.WriteLine("Sent reply");

 Console.WriteLine("\tTime: {0}",

DateTime.Now.ToString("HH:mm:ss.ffffff"));

 Console.WriteLine("\tMessage ID: {0}", replyMessage.Id);

 Console.WriteLine("\tCorrel. ID: {0}",

replyMessage.CorrelationId);

 Console.WriteLine("\tReply to: {0}", "<n/a>");

 Console.WriteLine("\tContents: {0}",

replyMessage.Body.ToString());

 }

 catch (Exception) {

 Console.WriteLine("Invalid message detected");

 Console.WriteLine("\tType: {0}",

requestMessage.BodyType);

 Console.WriteLine("\tTime: {0}",

DateTime.Now.ToString("HH:mm:ss.ffffff"));

 Console.WriteLine("\tMessage ID: {0}", requestMessage.Id);

 Console.WriteLine("\tCorrel. ID: {0}", "<n/a>");

 Console.WriteLine("\tReply to: {0}", "<n/a>");

 requestMessage.CorrelationId = requestMessage.Id;

 invalidQueue.Send(requestMessage);

 Console.WriteLine("Sent to invalid message queue");

 Console.WriteLine("\tType: {0}",

requestMessage.BodyType);

 Console.WriteLine("\tTime: {0}",

DateTime.Now.ToString("HH:mm:ss.ffffff"));

 Console.WriteLine("\tMessage ID: {0}", requestMessage.Id);

 Console.WriteLine("\tCorrel. ID: {0}",

requestMessage.CorrelationId);

 Console.WriteLine("\tReply to: {0}",

requestMessage.ResponseQueue.Path);

 }

 requestQueue.BeginReceive();

 }

}

Replier is what an application might use to receive a request and send a reply. The application
specifies the pathnames of the request and invalid message queues. (It does not need to specify
the name of the reply queue because, as we'll see, that will be provided by the message's Return
Address.) This is the information the requestor needs to initialize itself.

The Replier constructor is pretty similar to the requestor's, but there are a couple of differences:

• One difference is that the replier does not look up the reply queue. This is because the
replier does not assume it will always send replies on that queue; rather, as we'll see it
will let the request message tell it what queue to send the reply message on.

• Another difference is that replier is an Event-Driven Consumer, so it sets up a
ReceiveCompletedEventHandler. When a message is delivered to the request queue, the
messaging system will automatically call the specified method, OnReceiveCompleted.

Once the replier has initialized itself to be a listener on the request queue, there's not much for it
to do but wait for messages. Unlike the requestor, which has to explicitedly poll the reply queue
for messages, the replier is event-driven and so does nothing until the messaging system calls its
OnReceiveCompleted method with a new message. The message will be from the request queue
because the constructor created the event handler on the request queue. Once OnReceiveCompleted
is called, this is what it does to get the new message and processes it:

• The source is a MessageQueue, the request queue.
• The message itself is obtained by running the queue's EndReceive method. The replier

then prints out the details about the message.
• Then the replier implements its part of the Return Address pattern. Remember that the

requestor set the request message's response-queue property to specify the reply queue.
The replier now gets that property's value and uses it reference the proper
MessageQueue. The important part here is that the replier is not hard-coded to use a
particular reply queue; it uses whatever reply queue each particular request message
specifies.

• The replier then creates the reply message. In doing so, it implements the Correlation
Identifier pattern by setting the relpy message's correlation-id property to the same value
as the request message's message-id property.

• The replier then sends out the reply message and displays its details.
• If the message can be received but not successfully processed, and an Exception is thrown,

the replier resends the message to the invalid message queue. In the process, it sets the
new message's correlation id to the original message's message id.

• Once the replier has finished processing the message, it runs BeginReceive to start
listening for the next message.

Thus a replier does everything necessary to receive a message (presumably a request) and send a
reply. If it cannot reply to a message, it routes the message to the invalid message queue.

Invalid Message Example

While we're at it, let's look at an example of the Invalid Message Channel pattern. Remember, one
of the queues we need is one named "private$\InvalidMessages." This exists so that if an MSMQ
client (a Message Endpoint) receives a message it cannot process, it can move the strange message
to a special channel.

To demonstrate invalid message handling, we have designed an InvalidMessenger class. This
object is specifically designed to send a message on the request channel whose format is incorrect.
Like any channel, the request channel is a Datatype Channel, in that the request receivers expect
the requests to be of a certain format. The invalid messenger simply sends a message of a
different format; when the replier receives the message, it does not recognize the message's
format, and so moves the message to the invalid message queue.

We'll run the Replier in one window and the Invalid Messenger in another window. When the
invalid messenger sends its message, it displays output like this:

Sent request

 Type: 768

 Time: 09:39:44.223729

 Message ID: 8b0fc389-f21f-423b-9eaa-c3a881a34808\168

 Correl. ID: 00000000-0000-0000-0000-000000000000\0

 Reply to: .\private$\ReplyQueue

Type 768 means that the format of the message contents is binary (whereas the replier is
expecting the contents to be text/XML). The Replier recieves the invalid message and resends it
to the invalid message queue:

Invalid message detected

 Type: 768

 Time: 09:39:44.233744

 Message ID: 8b0fc389-f21f-423b-9eaa-c3a881a34808\168

 Correl. ID: <n/a>

 Reply to: <n/a>

Sent to invalid message queue

 Type: 768

 Time: 09:39:44.233744

 Message ID: 8b0fc389-f21f-423b-9eaa-c3a881a34808\169

 Correl. ID: 8b0fc389-f21f-423b-9eaa-c3a881a34808\168

 Reply to: FORMATNAME:DIRECT=OS:XYZ123\private$\ReplyQueue

One insight worth noting is that when the message is moved to the invalid message queue, it is
actually being resent, so it gets a new message ID. Because of this, we apply the Correlation
Identifier pattern; once the replier determines the message to be invalid, it copies the message's
main ID to its correlation ID so as to preserve a record of the message's original ID.

The code that handles this invalid-message processing is in the Replier class shown earlier, in the
OnReceiveCompleted method.

Conclusions

We've seen how to implement two classes, Requestor and Replier (Message Endpoints), that
exchange a request and reply Messages using Request-Reply. The request message uses a Return
Address to specify what queue to send the reply on. The reply messages uses a Correlation
Identifier to specify which request this is a reply for. The Requestor implements a Polling Consumer
to receive replies, whereas the Replier implements an Event-Driven Consumer to receive requests.
The request and reply queues are Datatype Channels; when a consumer receives a message that is
not of the right type, it reroutes the message to the Invalid Message Channel.

JMS Publish/Subscribe Example

This is a simple example that shows the power of publish/subscribe messaging, and explores the
alternative designs available. It shows how multiple subscriber applications can all be informed
of a single event by publishing the event just once, and considers alternative stratagies for how to
communicate details of that event to the subscribers.

Publish/Subscribe using a JMS Topic

To understand how helpful a simple Publish-Subscribe Channel really is, we first need to consider
what it is like to implement the Observer pattern in a distributed fashion, amongst multiple
applications. Before we get to that, let's review the basics of Observer.

The Observer Pattern

The Observer pattern [GoF] documents a design through which an object can notify its
dependents of a change, while keeping that object decoupled from its dependents so that the

object works just fine no matter how many dependents it has, even none at all. Its participants are
a Subject—the object announcing changes in its state—and Observers—objects interested in
receiving notification of changes in the Subject. When a subject's state changes, it sends itself
Notify(), whose implementation knows the list of observers and sends Update() to each of them.
Some observers may not be interested in this state change, but those who are can find out what
the new state is by sending GetState() to the subject. The subject must also implement
Attach(Observer) and Detach(Observer) methods that the observers use to register interest.

Observer provides two ways to get the new state from the subject to the observer: the push model
and the pull model. With the push model, the Update call to each observer contains the new state as
a parameter. Thus interested observers can avoid having to call GetState(), but effort is wasted
passing data to uninterested observers. The opposite approach is the pull model, where the subject
sends basic notification and each observer requests the new state from the subject. Thus each
observer can request the exact details it wants, even none at all, but the subject often has to serve
multiple requests for the same data. The push model requires a single, one-way
communication—the Subject pushes the data to an Observer as part of the update. The pull
model requires three one-way communications—the Subject notifies an Observer, the Observer
requests the current state from the Subject, and the Subject sends the current state to the Observer.
As we'll see, the number of one-way communications affects both the design-time complexity
and the runtime performance of the notification.

The easiest way to implement a Subject's Notify() method is with a single thread, but that can
have undesirable performance implications. A single thread will update each observer
one-at-a-time, in sequence; so those at the end of a long list of observers may need to wait a long
time for updates. And a subject spending a long time updating all of its observers isn't
accomplishing anything else. Even worse, an observer may well use its update thread to recact to
the update, querying the subject for state and processing the new data; such observer work in the
update thread makes the update process take even longer.

Thus the more sophisticated way to implement a Subject's Notify() method is to run each
Update() call in its own thread. Then all observers can be updated concurrently, and whatever
work each may do in its update thread does not delay the other observers or the subject. The
downside is that implementing multithreading and handling thread-management issues is more
complex.

Distributed Observer

The Observer pattern tends to assume that the Subject and its Observers all run in the same
application. The pattern's design supports distribution, where the Observers run in a seperate
memory space from the Subject and perhaps from each other, but the distribution takes work.
The Update() and GetState() methods, as well as the Attach and Detach methods, must be made
remotely accessible (see Remote Procedure Invocation). Because the Subject must be able to call each
Observer and vise versa, each object must be running in some type of ORB environment that
allows the objects it contains to be invoked remotely. And because the update details and state

data will be passed between memory spaces, the applications must be able to serialize (e.g.,
marshall) the objects they are passing.

Thus implementing Observer in a distributed environment can get rather complex. Not only is a
multi-threaded Observer somewhat difficult to implement, but then making methods remotely
accessible—and invoking them remotely—adds more difficulty. The can be a lot of work just to
notify some dependents of state changes.

Another problem is that a Remote Procedure Invocation only works when the source of the call, the
target, and the network connecting them are all working properly. If a Subject announces a
change and a remote Observer is not ready to process the notification or is disconnected from the
network, the Observer looses the notification. While the Observer may work fine without the
notification in some cases, in other cases the lost notification may cause the Observer to become
out of sync with the Subject—the whole problem the Observer pattern is designed to prevent.

Distribution also favors the push model over the pull model. As discussed earlier, push requires
a single one-way communication whereas pull requires three. When the distribution is
implemented via RPC's (remote procedure calls), push requires one call (Update()) whereas pull
requires at least two calls (Update() and GetState()). RPC's have more overhead than
non-distributed method invocations, so the extra calls required by the push approach can quickly
hurt performance.

Publish-Subscribe

A Publish-Subscribe Channel implements the Observer pattern, making the pattern much easier to
use amongst distributed applications. The pattern is implemented in three steps:

1. The messaging system administrator creates a Publish-Subscribe Channel. (This will be
represented in Java applications as a JMS Topic.)

2. The application acting as the Subject creates a TopicPublisher (a type of MessageProducer)
to send messages on the channel.

3. Each of the applications acting as an Observer (e.g., a dependent) creates a
TopicSubscriber (a type of MessageConsumer) to receive messages on the channel. (This
is analogous to calling the Attach(Observer) method in the Observer pattern.)

This establishes a connection between the subject and the observers through the channel. Now,
whenever the subject has a change to announce, it does so by sending a message. The channel
will ensure that each of the observers receives a copy of this message.

Here is a simple example of the code needed to announce the change:

import javax.jms.Connection;

import javax.jms.ConnectionFactory;

import javax.jms.Destination;

import javax.jms.JMSException;

import javax.jms.MessageProducer;

import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.NamingException;

public class SubjectGateway {

 public static final String UPDATE_TOPIC_NAME = "jms/Update";

 private Connection connection;

 private Session session;

 private MessageProducer updateProducer;

 protected SubjectGateway() {

 super();

 }

 public static SubjectGateway newGateway() throws JMSException, NamingException

{

 SubjectGateway gateway = new SubjectGateway();

 gateway.initialize();

 return gateway;

 }

 protected void initialize() throws JMSException, NamingException {

 ConnectionFactory connectionFactory =

JndiUtil.getQueueConnectionFactory();

 connection = connectionFactory.createConnection();

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 Destination updateTopic =

JndiUtil.getDestination(UPDATE_TOPIC_NAME);

 updateProducer = session.createProducer(updateTopic);

 connection.start();

 }

 public void notify(String state) throws JMSException {

 TextMessage message = session.createTextMessage(state);

 updateProducer.send(message);

 }

 public void release() throws JMSException {

 if (connection != null) {

 connection.stop();

 connection.close();

 }

 }

}

SubjectGateway is a Messaging Gateway between the Subject (not shown) and the messaging
system. The subject creates the gateway and then uses it to broadcast notifications. Essentially,
the subject's Notify() method is implemented to call SubjectGateway.notify(String). The
gateway then announces the change by sending a message on the update channel.

And here is an example of the code needed to receive the change notification:

import javax.jms.Connection;

import javax.jms.ConnectionFactory;

import javax.jms.Destination;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.MessageConsumer;

import javax.jms.MessageListener;

import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.NamingException;

public class ObserverGateway implements MessageListener {

 public static final String UPDATE_TOPIC_NAME = "jms/Update";

 private Observer observer;

 private Connection connection;

 private MessageConsumer updateConsumer;

 protected ObserverGateway() {

 super();

 }

 public static ObserverGateway newGateway(Observer observer)

 throws JMSException, NamingException {

 ObserverGateway gateway = new ObserverGateway();

 gateway.initialize(observer);

 return gateway;

 }

 protected void initialize(Observer observer) throws JMSException,

NamingException {

 this.observer = observer;

 ConnectionFactory connectionFactory =

JndiUtil.getQueueConnectionFactory();

 connection = connectionFactory.createConnection();

 Session session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

 Destination updateTopic =

JndiUtil.getDestination(UPDATE_TOPIC_NAME);

 updateConsumer = session.createConsumer(updateTopic);

 updateConsumer.setMessageListener(this);

 }

 public void onMessage(Message message) {

 try {

 TextMessage textMsg = (TextMessage) message; // assume cast

always works

 String newState = textMsg.getText();

 update(newState);

 } catch (JMSException e) {

 e.printStackTrace();

 }

 }

 public void attach() throws JMSException {

 connection.start();

 }

 public void detach() throws JMSException {

 if (connection != null) {

 connection.stop();

 connection.close();

 }

 }

 private void update(String newState) throws JMSException {

 observer.update(newState);

 }

}

ObserverGateway is another Messaging Gateway, this time between the Observer (not shown) and
the messaging system. The observer creates the gateway, then uses attach() to start the
Connection (which is analogous to calling the Attach(Observer) method in the Observer pattern).
The gateway is an Event-Driven Consumer, so it implements the MessageListener interface, which
requires the onMessage method. In this way, when an update is received, the gateway processes

the message to get the new state, and calls is own update(String) method which calls the
corresponding message in the observer.

These two classes implement the push model version of Observer. With the notification message
sent by SubjectGateway.notify(String), the existance of the message tells the Observer that a
change has occurred, but it is the contents of the message that tell the Observer what the Subject's
new state is. The new state is being pushed from the Subject to the Observer. As we'll see later,
there's another way to implement all this using the pull model.

Comparisons

For distributed notification between applications, the Publish-Subscribe (e.g., messaging)
approach has several advantages over the traditional, synchronous (e.g., RPC) approach of
implementing Observer:

• Simplifies Notification — The Subject's implementation of Notify() becomes incredibly
simple; the code just has to send a message on a channel. Likewise, Observer.Update()
just has to receive a message.

• Simplifies Attach/Detach — Rather than attach to and detach from the Subject, an
Observer needs to subscribe to and unsubscribe from the channel. The Subject does not
need to implement Attach(Observer) or Detach(Observer) (although the Observer may
implement these methods to encapsulate the subscribe and unsubscribe behavior).

• Simplifies Concurrent Threading — The Subject only needs one thread to update all
Observers concurrently—the channel delivers the notification message to the Observers
concurrently—and each Observer handles the update in its own thread. This simplifies
the Subject's implementation, and because each Observer uses its own thread, what one
does in its update thread does not affect the others.

• Simplifies Remote Access — Niether the Subject nor the Observers have to implement
any remote methods, nor do they need to run in an ORB. They just need to access the
messaging system and it handles the distribution.

• Increases Reliability — Because the channel uses messaging, notifications will be queued
until the Observer can process them, which also enables the Observer to throttle the
notifications. If an Observer wants to receive notifications that are sent while that
Observer is disconnected, it should make itself a Durable Subscriber.

One issue that the Publish-Subscribe approach does not change is serialization. Whether
Observer is implemented through RPC or messaging, state data is being distributed from the
Subject's memory space to each Observer's memory space, so the data has to be serialized (e.g.,
marshalled). This behavior has to be implemented for either approach.

If the Publish-Subscribe approach has a downside, it's that the approach requires messaging,
which means that the Subject and Observer applications must have access to a shared messaging
system and must be implemented as clients of that messaging system. Still, making applications
into messaging clients is no more difficult, and probably easier, than using the RPC approach.

Push and Pull Models

Another potential downside of the Publish-Subscribe approach is that the pull model is more
complex than the push model. As discussed earlier, the pull model requires more discussion back
and forth than the push model. When the discussion is amongst distributed applications, the
extra communication can significantly hurt performance.

The communication is more complex with messaging than with RPC. In both cases, Update() is a
one-way communication, either an RPC that returns void or a single Event Message from the
Subject to the Observer. The tricker part is when an Observer needs to query the Subject's state;
GetState() is a two-way communication, either a single RPC that requests the state and returns it,
or a Request-Reply—a pair of messages where a Command Message requests the state and a
separate Document Message returns it.

What makes Request-Reply more difficult is not just that it requires a pair of messages, but that it
requires a pair of channels to transmit those messages. One channel, the get-state-request channel,
goes from an Observer to the Subject; an Observer sends the state request on that channel. The
other channel, the get-state-reply channel, goes from the Subject back to the Observer; the Subject
sends the state reply on that channel. All of the Observers can share the same request channel,
but they will probably each need their own reply channel. Each Observer needs to receive not just
any response, but the particular response for its specific request, and the easiest way to ensure
this is for each Observer to have its own reply channel. (An alternative is to use a single reply
channel and use Correlation Identifiers to figure out which reply goes to which observer, but a
separate channel per observer is a lot easier to implement.)

Publish/Subscribe using the Pull Model

A reply channel for each Observer can lead to an explosion of channels. Such a large number of
channels may be managable, but the messaging system administrator does not know how many
static channels to create when the number of Observers needing to use these channels changes
dynamicly at runtime. Even if there are enough channels for all of the Observers, how does each
Observer know which channel to use?

JMS has a feature, TemporaryQueue, specifically for this purpose. [Hapner, p.60] (Also see the
discussion in Request-Reply.) An Observer can create a temporary queue, just for its own use,
specify that as the Return Address in its request, and wait for the reply on that queue. Creating
new queues frequently can be inefficient, depending on your messaging system's implementation,

and temporary queues cannot be persistent (for use with Guaranteed Delivery). However, if you
don't want to use the push model, you can implement the pull model using temporary queues.

These two classes show how to implement the gateways using the pull model.

import javax.jms.Connection;

import javax.jms.ConnectionFactory;

import javax.jms.Destination;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.MessageConsumer;

import javax.jms.MessageListener;

import javax.jms.MessageProducer;

import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.NamingException;

public class PullSubjectGateway {

 public static final String UPDATE_TOPIC_NAME = "jms/Update";

 private PullSubject subject;

 private Connection connection;

 private Session session;

 private MessageProducer updateProducer;

 protected PullSubjectGateway() {

 super();

 }

 public static PullSubjectGateway newGateway(PullSubject subject)

 throws JMSException, NamingException {

 PullSubjectGateway gateway = new PullSubjectGateway();

 gateway.initialize(subject);

 return gateway;

 }

 protected void initialize(PullSubject subject) throws JMSException,

NamingException {

 this.subject = subject;

 ConnectionFactory connectionFactory =

JndiUtil.getQueueConnectionFactory();

 connection = connectionFactory.createConnection();

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 Destination updateTopic =

JndiUtil.getDestination(UPDATE_TOPIC_NAME);

 updateProducer = session.createProducer(updateTopic);

 new Thread(new GetStateReplier()).start();

 connection.start();

 }

 public void notifyNoState() throws JMSException {

 TextMessage message = session.createTextMessage();

 updateProducer.send(message);

 }

 public void release() throws JMSException {

 if (connection != null) {

 connection.stop();

 connection.close();

 }

 }

 private class GetStateReplier implements Runnable, MessageListener {

 public static final String GET_STATE_QUEUE_NAME = "jms/GetState";

 private Session session;

 private MessageConsumer requestConsumer;

 public void run() {

 try {

 session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

 Destination getStateQueue =

JndiUtil.getDestination(GET_STATE_QUEUE_NAME);

 requestConsumer =

session.createConsumer(getStateQueue);

 requestConsumer.setMessageListener(this);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public void onMessage(Message message) {

 try {

 Destination replyQueue = message.getJMSReplyTo();

 MessageProducer replyProducer =

session.createProducer(replyQueue);

 Message replyMessage =

session.createTextMessage(subject.getState());

 replyProducer.send(replyMessage);

 } catch (JMSException e) {

 e.printStackTrace();

 }

 }

 }

}

PullSubjectGateway is very similar to SubjectGateway. The pull version now has a reference to its
subject so that the gateway can query the subject for its state when requested by an observer.
notify(String) has now become notifyNoState(), because the pull model simply sends out
notification without including any state (and because Java already uses the method name
notify()).

The big addition for the pull model is GetStateReplier, an inner class that implements Runnable
so that it can run in its own thread. It is also a MessageListener, which makes it an Event-Driven
Consumer. Its onMessage method reads requests from the GetState queue and sends replies
containing the subject's state to the queue specified by the request. In this way, when an observer
makes a GetState() request, the gateway sends a reply (see Request-Reply).

import javax.jms.Destination;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.MessageConsumer;

import javax.jms.MessageListener;

import javax.jms.Queue;

import javax.jms.QueueConnection;

import javax.jms.QueueConnectionFactory;

import javax.jms.QueueRequestor;

import javax.jms.QueueSession;

import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.NamingException;

public class PullObserverGateway implements MessageListener {

 public static final String UPDATE_TOPIC_NAME = "jms/Update";

 public static final String GET_STATE_QUEUE_NAME = "jms/GetState";

 private PullObserver observer;

 private QueueConnection connection;

 private QueueSession session;

 private MessageConsumer updateConsumer;

 private QueueRequestor getStateRequestor;

 protected PullObserverGateway() {

 super();

 }

 public static PullObserverGateway newGateway(PullObserver observer)

 throws JMSException, NamingException {

 PullObserverGateway gateway = new PullObserverGateway();

 gateway.initialize(observer);

 return gateway;

 }

 protected void initialize(PullObserver observer) throws JMSException,

NamingException {

 this.observer = observer;

 QueueConnectionFactory connectionFactory =

JndiUtil.getQueueConnectionFactory();

 connection = connectionFactory.createQueueConnection();

 session = connection.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);

 Destination updateTopic =

JndiUtil.getDestination(UPDATE_TOPIC_NAME);

 updateConsumer = session.createConsumer(updateTopic);

 updateConsumer.setMessageListener(this);

 Queue getStateQueue = (Queue)

JndiUtil.getDestination(GET_STATE_QUEUE_NAME);

 getStateRequestor = new QueueRequestor(session, getStateQueue);

 }

 public void onMessage(Message message) {

 try {

 // message's contents are empty

 updateNoState();

 } catch (JMSException e) {

 e.printStackTrace();

 }

 }

 public void attach() throws JMSException {

 connection.start();

 }

 public void detach() throws JMSException {

 if (connection != null) {

 connection.stop();

 connection.close();

 }

 }

 private void updateNoState() throws JMSException {

 TextMessage getStateRequestMessage = session.createTextMessage();

 Message getStateReplyMessage =

getStateRequestor.request(getStateRequestMessage);

 TextMessage textMsg = (TextMessage) getStateReplyMessage; // assume

cast always works

 String newState = textMsg.getText();

 observer.update(newState);

 }

}

Again, PullObserverGateway is similar to ObserverGateway, but with some more code to
implement the pull model. In initialize, it not only sets up updateConsumer to listen for updates,
but also sets up getStateRequestor to send GetState() requests. (getStateRequestor is a
QueueRequestor; see Request-Reply.) In the pull version, the gateway's onMessage code ignores the
message's contents because the message is empty. The message's existance tells the observer that
the subject has changed, but does not tell the observer what the subject's new state is. So all there
is to do is call updateNoState() (named similarly to notifyNoState()).

The difference for the Observer between the push and pull models becomes apparent in the
implementation of updateNoState() vs. update(String). Whereas the push version gets the new
state as a parameter and just has to update the observer, the pull version must go get the new
state before it can update the observer. To get the new state, it uses the getStateRequestor to send
a request and get the reply. The reply contains the subject's new state, which the gateway uses to
update the observer. (Note that in this simple implementation, the gateway is single-threaded, so
while it is sending the get-state request and waiting for the reply, it is not processing any more
updates. Thus if the request or reply messages take a really long time to transmit, the gateway
will be stuck waiting and any more updates that occur will simply queue up.)

So as you can see, the pull model is more complex than the push model. It requires more
channels (including a temporary one for every observer), it requires more messages (three
messages per update per interested observer instead of one message for all observers), the subject
and observer classes require more code to manage the additional messaging, and the objects at
runtime require more threads to execute the additional messaging. If all of this is acceptable in

your application, then the pull model is a viable approach. However, if in doubt, you should
probably start with the push model because it is simpler.

Channel Design

So far, we've considered one Subject with one piece of state notifying its Observers. Using the
push model, this requires one Publish-Subscribe Channel for communicating changes in the
Subject's state to the Observers.

Real enterprise applications are much more complex. An application can contain lots of Subjects
that need to announce changes. Each Subject often contains several different pieces of state, called
aspects, that can change independently. A single Observer might be interested in several different
aspects in several different Subjects, where the Subjects are not only multiple instances of the
same class, but may well be instances of different classes.

So update semantics in sophsticated applications can quickly become complex. The Observer
pattern address this as implementation issues like "Observing more than one subject" and
"Specifying modifications of interest explicitly." Also, the SASE (Self-Addresses Stamped
Envelope) pattern describes a combination of the Observer and Command patterns whereby an
observer specifies the command a subject should send it when a certain change occurs. [Alpert,
pp.312-314]

Without getting too deep into the issues of making sure observers only receive the updates they
need, let's consider the implications for messaging, namely: How many channels will we need?

Let's first consider a simple case. An enterprise may have several different applications
responsible for storing a customer's contact information, such as a mailing address. When a
customer's address is updated in one of these applications, the application should notify other
applications that may need this new information as well. Meanwhile, there may be several
applications that need to know when an address changes, so they would like to register to receive
notification.

This is a simple problem to solve. All that is needed is a single Publish-Subscribe Channel for
announcing address changes. Each application that can change an address then also has the
responsibility to announce that change by publishing a message on the channel. Each application
that wishes to receive notification subscribes to the channel. A particular change message might
look like this:

<AddressChange customer_id="12345">

 <OldAddress>

 <Street>123 Wall Street</Street>

 <City>New York</City>

 <State>NY</State>

 <Zip>10005</Zip>

 </OldAddress>

 <NewAddress>

 <Street>321 Sunset Blvd</Street>

 <City>Los Angeles</City>

 <State>CA</State>

 <Zip>90012</Zip>

 </NewAddress>

</AddressChange>

Now let's consider another problem. The enterprise may also have applications that need to
announce when they are out of a product, and others that need to receive these notifications so
that they can reorder the product. This is just a different example of the last problem, and is
solved the same way by using a Publish-Subscribe Channel to make out-of-product announcements.
One of these messages might look like this:

<OutOfProduct>

 <ProductID>12345</ProductID>

 <StoreID>67890</StoreID>

 <QuantityRequested>100</QuantityRequested>

</OutOfProduct>

But this leads us to wonder: Can we use the same channel for customer address changes and for
out-of-product announcements? Probably not. First, Datatype Channel tells us that all of the
messages on a channel must be of the same type, which in this case means that they must all
conform to the same XML schema. <AddressChange> is obviously a very different element type
from <OutOfProduct>, so they should not be sent on the same channel. Perhaps the data formats
could be reworked so that both message types fit the same schema and receivers could tell which
messages were for addresses and which were for products. But then the problem is that the
applications interested in address changes are probablty not the same ones interested in product
updates, so if the messages use the same channel, an application will frequently receive
notifications it's not interested in. Thus is makes sense to have two separate address change and
product update channels.

Now consider a third case where a customer's credit rating could change. The message might
look like this:

<CreditRatingChange customer_id="12345">

 <OldRating>AAA</OldRating>

 <NewRating>BBB</NewRating>

</CreditRatingChange>

Like the case with product notifications, it might be tempting to solve the problem with a new
credit-rating-changed channel (in addition to the address-changed and out-of-product channels).
This would keep the credit rating changes separate from the address changes, and would allow
dependents to only register for the type of changes they're interested in.

The problem with this approach is that it can lead to a channel explosion. Consider all the pieces
of data that may be known about a customer: name; contacts (address, phone number, e-mail) for
mailing, shipping, and billing; credit rating; service level; standard discount; etc. Each time any
one of these aspects changes, other applications may need to know about it. Creating a channel
for each can lead to lots of channels.

Large numbers of channels may tax the messaging system. Numerous channels with little traffic
on each can waste resources and make load difficult to distribute. Or, numerous channels with
lots of little messages can add to messaging overhead. Dependents can become confused as to
which of a large number of channels to subscribe to. Multiple channels require multiple senders
and receivers, perhaps leading to lots of threads checking lots of channels that are usually empty.
So creating yet more channels may not be such a good idea.

What may work better is to send both the address-changed and credit-rating-changed messages
on the same channel, since they both concern changes to the customer and an application
interested in one kind of change may be interested in the others as well. Yet a separate
out-of-product channel is still a good idea since applications interested in customers may not be
interested in products and vise versa.

The address-changed and credit-rating-changed messages have different formats, yet Datatype
Channel tells us that to be on the same channel, the messages must have the same format. With
XML, this means that all of the messages must have the same root element type, but perhaps can
have different optional nested elements. So unified customer-changed messages might look like
this:

<CustomerChange customer_id="12345">

 <AddressChange>

 <OldAddress>

 <Street>123 Wall Street</Street>

 <City>New York</City>

 <State>NY</State>

 <Zip>10005</Zip>

 </OldAddress>

 <NewAddress>

 <Street>321 Sunset Blvd</Street>

 <City>Los Angeles</City>

 <State>CA</State>

 <Zip>90012</Zip>

 </NewAddress>

 </AddressChange>

</CustomerChange>

<CustomerChange customer_id="12345">

 <CreditRatingChange>

 <OldRating>AAA</OldRating>

 <NewRating>BBB</NewRating>

 </CreditRatingChange>

</CustomerChange>

There may still be the problem that shipping applications interested in address changes are not
interested in credit rating changes, and billing applications are interested in the opposite. These
applications can use Selective Consumers to get only the messages of interest. If selective
consumers prove to be complicated and a messaging system can easily support more channels,
then perhaps separate channels would be better after all.

As with may issues in enterprise architecture and design, there are no simple answers and lots of
tradeoffs. With Publish-Subscribe Channel (as with any message channel), the goal is to help ensure
that the observers only receive the notifications they need, without an explosion of separate
channels and without taxing the typical observer with lots of threads running lots of consumers
monitoring lots of channels.

Conclusions

This chapter shows that Publish-Subscribe Channels are an implementation of the Observer pattern
that make the pattern much easier to use in distributed environments. When a channel is used,
Subject.Notify() and Observer.Update() become much simpler because all they have to do is
send and receive messages. The messaging system takes care of distribution and concurrency
while making the remote notification more reliable. The push model is simpler and often more
efficient than the pull model, especially for distributed notification, especially with messaging;
yet the pull model can also be implemented using messaging. In complex applications where lots
of data can change, it may be tempting to create a channel for every different thing that can
change, but it's often more practical to use the same channel to trasmit similar notifications going
to the same observers. Even if your applications don't need messaging for anything else, if they
need to notify each other of changes, it may well be worth using Messaging just so you can take
advantage of Publish-Subscribe Channels.

7．Message Routing

Introduction

In the Chapter 2, we discussed how a Message Router can be used to decouple a message source
from the ultimate destination of the message. This chapter elaborates on specific types of Message
Routers to explain how to provide routing and brokering ability to an integration solution. Most
patterns are refinements of the Message Router pattern while others combine multiple Message
Routers to solve more complex problems. Therefore, we can categorize the Message Routing
patterns into the following groups:

• Simple Routers are variants of the Message Router and route messages from one inbound
channel to one or more outbound channels.

• Composed Routers combine multiple simple routers to create more complex message
flows.

• Architectural Patterns describe architectural styles based on Message Routers.

Simple Routers

The Content-Based Router inspects the content of a message and routes it to another channel based
on the content of the message. Using such a router enables the message producer to send
messages to a single channel and leave it to the Content-Based Router to inspect messages and
route them to the proper destination. This alleviates the sending application from this task and
avoids coupling the message producer to specific destination channels.

A Message Filter is a special form of a Content-Based Router. It examines the message content and
passes the message to another channel if the message content matches certain criteria. Otherwise,
it discards the message. Message Filters can be used with Publish-Subscribe Channel to route a
message to all possible recipients and allow the recipients to filter out irrelevant messages. A
Message Filter performs a function that is very similar to that of a Selective Consumer with the key
difference being that a Message Filter is part of the messaging system, routing qualifying messages
to another channel, whereas a Selective Consumer is built into a Message Endpoint.

A Content-Based Router and a Message Filter can actually solve a similar problem. A Content-Based
Router routes a message to the correct destination based on the criteria encoded in the
Content-Based Router. Equivalent behavior can be achieved by using a Publish-Subscribe Channel
and an array of Message Filters, one for each potential recipient. Each Message Filter eliminates the
messages that to not match the criteria for the specific destination. The Content-Based Router
routes predictively to a single channel and therefore has total control, but is also dependent on
the list of all possible destination channels. The Message Filter array filters reactively, spreading
the routing logic across many Message Filters but avoiding a single component that is dependent

on all possible destinations. The trade-off between these solutions is described in more detail in
the Message Filter pattern.

A basic Message Router uses fixed rules to determine the destination of an incoming message.
Where we need more flexibility, a Dynamic Router can be very useful. This router allows the
routing logic to be modified by sending control messages to a designated control port. The
dynamic nature of the Dynamic Router can be combined with most forms of the Message Router.

Chapter 3 introduced the concept of a Point-to-Point Channel and a Publish-Subscribe Channel.
Sometimes, you need to send a message to more than one recipient, but want to maintain control
over the recipients. The Recipient List allows you do just that. In essence, a Recipient List is a
Content-Based Router that can route a single message to more than one destination channel.

Some messages contain lists of individual items. How do you process these items individually?
Use a Splitter to split the large message into individual messages. Each message can then be
routed further and processed individually.

However, you may need to recombine the messages that the Splitter created back into a single
message. This is one of the functions an Aggregator performs. An Aggregator can receive a stream
of messages, identify related messages and combine them into a single message. Unlike the other
routing patterns, the Aggregator is a stateful Message Router because it has to store messages
internally until specific conditions are fulfilled. This mean that an Aggregator can consume a
number of messages before it publishes a message.

Because we use messaging to connect applications or components running on multiple
computers, multiple messages can be processed in parallel. For example, more than one process
may consume messages off a single channel. One of these processes may execute faster than
another, causing messages to be processed out of order. However, some components depend on
the correct sequence of individual messages, for example ledger-based systems. The Resequencer
puts out-of-sequence messages back into sequence. The Resequencer is also a stateful Message
Router because it may need to store a number of messages internally until the message arrives
that completes the sequence. Unlike the Aggregator, though, the Resequencer ultimately publishes
the same number of messages it consumed.

The following table summarizes the properties of the Message Router variants (we did not include
the Dynamic Router as a separate alternative because any router can be implemented as a dynamic
variant):

Pattern
Number of Msgs

Consumed

Number of Msgs

Published
Stateful? Comment

Content-Based

Router
1 1

No

(mostly)

Message Filter 1 0 or 1
No

(mostly)

Recipient List 1 multiple (incl. 0) No

Splitter 1 multiple No

Aggregator multiple 1 Yes

Resequencer multiple multiple Yes
Publishes same number it

consumes.

Composed Routers

A key advantage of the Pipes and Filters architecture is the fact that we can compose multiple
filters into a larger solution. Composed Message Processor or an Scatter-Gather combine multiple
Message Router variants to create more comprehensive solutions. Both patterns allow us to
retrieve information from multiple sources and recombine it into a single message. While the
Composed Message Processor maintains control over the possible sources the Scatter-Gather uses a
Publish-Subscribe Channel so that any interested component can participate in the process.

Both the Composed Message Processor and the Scatter-Gather route a single message to a number of
participants concurrently and reassemble the replies into a single message. We can say that these
patterns manage the parallel routing of a message. Two more patterns manage the sequential
routing of a message, i.e. routing a message through a sequence of individual steps. If we want to
control the path of a message from a central point we can use a Routing Slip to specify the path
the message should take. This pattern works just like the routing slip attached to office
documents to pass them sequentially by a number of recipients. Alternatively, we can use a
Process Manager which gives us more flexibility but requires the message to return to a central
component after each function.

Architectural Patterns

Message Routers enable us to architect an integration solution using a central Message Broker. As
opposed to the different message routing design patterns, this pattern describes a hub-and-spoke
architectural style.

The Right Router for the Right Purpose

This chapter contains 10 patterns. How can we make it easy to find the right pattern for the right
purpose? The following decision chart helps you find the right pattern for the right purpose by
matter of simple yes/no decisions. For example, if you are looking for a simple routing pattern
that consumes one message at a time but publishes multiple messages in sequential order, you
should use a Splitter. The diagram also helps illustrate how closely the individual patterns are
related. For example, a Routing Slip and a Process Manager solve similar problems while a Message
Filter does something rather different.

Content-Based Router

Assume that we are building an order processing system. When an incoming order is received,
we first validate the order and then verify that the ordered item is available in the warehouse.
This function is performed by the inventory system. This sequence of processing steps is a perfect
candidate for the Pipes and Filters style. We create two filters, one for the validation step and one
for the inventory system, and route the incoming messages through both filters. However, in
many enterprise integration scenarios more than one inventory system exists with each system
being able to handle only specific items.

How do we handle a situation where the implementation of a single logical function (e.g.,
inventory check) is spread across multiple physical systems?

Integration solutions connect existing applications so that they work together. Because many of
these applications were developed without integration in mind, integration solutions rarely find
an ideal scenario where a business function is well encapsulated inside a single system. For
example, acquisitions or business partnerships often result in multiple systems performing the
same business function. Also, many businesses that act as aggregators or resellers typically
interface with multiple systems that perform the same functions (e.g. check inventory, place
order etc). To make matters more complicated, these systems may be operated within the
company or may be under the control of business partners or affiliates. For example, large
e-tailers like Amazon allow you to order anything from books to chain saws and clothing.
Depending on the type of item, the order may be processed by a different "behind-the-scenes"
merchant's order processing systems.

Let us assume that the company is selling widgets and gadgets and has two inventory systems,
one for widgets and one for gadgets. Let's also assume that each item is identified by a unique
item number. When the company receives an order, it needs to decide which inventory system to
pass the order to based on the type of item ordered. We could create separate channels for
incoming orders based on the type of item ordered. However, this would require the customers
to know our internal system architecture when in fact they may not even be aware that we
distinguish between widgets and gadgets. Therefore, we should hide the fact that the
implementation of the business function is spread across multiple systems from the remainder of
the integration solution, including customers. Therefore, we need to expect messages for different
items arriving on the same channel.

We could forward the order to all inventory systems (using a Publish-Subscribe Channel), and let
each system decide whether it can handle the order. This approach makes the addition of new
inventory systems easy because we do not have to change any of the existing components when a
new inventory system comes on-line. However, this approach assumes distributed coordination
across multiple systems. What happens if the order cannot be processed by any system? Or if
more than one system can process the order? Will the customer receive duplicate shipments?
Also, in many cases an inventory system will treat an order for an item that it cannot handle as an
error. If this is the case, each order would cause errors in all inventory systems but one. It would
be hard to distinguish these errors from 'real' errors such as an invalid order.

An alternative approach would be to use the item number as a channel address. Each item would
have its dedicated channel and the customers could simply put publish the order to the channel
associated with the item's number without having to know about any internal distinctions
between widgets and gadgets. The inventory systems could listen on all the channels for those
items that it can process. This approach leverages the channel addressability to route messages to
the correct inventory system. However, a large number of items could quickly lead to an
explosion of the number of channels, burdening the system with run-time and management
overhead. Creating new channels for each item that is offered would quickly result in chaos.

We should also try to minimize message traffic. For example we could route the order message
through one inventory system after the other. The first system that can accept the order consumes
the message and processes the order. If it cannot process the order it passes the order message to
the next system. This approach eliminates the danger of orders being accepted by multiple
systems simultaneously. Also, we know that the order was not processed by any system if the
last system passes it back. The solution does require, however, that the systems know enough
about each other in order to pass the message from one system to the next. This approach is
similar to the Chain of Responsibility pattern described in [GoF]. However, in the world of
message-based integration passing messages through a chain of systems could mean significant
overhead. Also, this approach would require collaboration of the individual systems, which may
not be feasible if some systems are maintained by external business partners and are therefore not
under our control.

In summary, we need a solution that encapsulates the fact that the business function is split
across systems, is efficient in its usage of message channels and message traffic, and ensures that
the order is handled by exactly one inventory system.

Use a Content-Based Router to route each message to the correct recipient based on message
content.

The Content-Based Router examines the message content and routes the message onto a different
channel based on data contained in the message. The routing can be based on a number of criteria
such as existence of fields, specific field values etc. When implementing a Content-Based Router,
special caution should be taken to make the routing function easy to maintain as the router can
become a point of frequent maintenance. In more sophisticated integration scenarios, the
Content-Based Router can take on the form of a configurable rules engine that computes the
destination channel based on a set of configurable rules.

Reducing Dependencies

Content-Based Router is a frequently used form of the more generic Message Router. It uses
predictive routing, i.e. it incorporates knowledge of the capabilities of all other systems. This makes
for efficient routing because each outgoing message is sent directly to the correct system. The
downside is that the Content-Based Router has to have knowledge of all possible recipients and
their capabilities. As recipients are added, removed or changed, the Content-Based Router has to be
changed every time. This can become a maintenance nightmare.

We can avoid the dependency of the Content-Based Router on the individual recipients if the
recipients assume more control over the routing process. These options can be summarized as
reactive filtering because they allow each participant to filter relevant messages as they come by.
The distribution of routing control eliminates the need for a Content-Based Router but the solution
is generally less efficient. These solutions and associated trade-offs are described in more detail in
the Message Filter and Routing Slip.

The Dynamic Router describes a compromise between the Content-Based Router and the reactive
filtering approach by having each recipient inform the Content-Based Router of its capabilities. The
Content-Based Router maintains a list of each recipient's capabilities and routes incoming messages
accordingly. The price we pay for this flexibility is the complexity of the solution and the
difficulty of debugging such a system when compared to a simple Content-Based Router.

Example: Content-Based Router Router with C# and MSMQ

This code example demonstrates a very simple Content-Based Router that routes messages based
on the first character in the message body. If the body text starts with 'W', the router routes the
message to the widgetQueue, if it starts with 'G', it goes to the gadgetQueue. If it is neither, the
router sends it to the dunnoQueue. This queue is actually an example of a Invalid Message Channel.
This router is stateless, i.e. it does not "remember" any previous messages when making the
routing decision.

class ContentBasedRouter

{

 protected MessageQueue inQueue;

 protected MessageQueue widgetQueue;

 protected MessageQueue gadgetQueue;

 protected MessageQueue dunnoQueue;

 public ContentBasedRouter(MessageQueue inQueue, MessageQueue widgetQueue,

MessageQueue gadgetQueue, MessageQueue dunnoQueue)

 {

 this.inQueue = inQueue;

 this.widgetQueue = widgetQueue;

 this.gadgetQueue = gadgetQueue;

 this.dunnoQueue = dunnoQueue;

 inQueue.ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);

 inQueue.BeginReceive();

 }

 private void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)

 {

 MessageQueue mq = (MessageQueue)source;

 mq.Formatter = new System.Messaging.XmlMessageFormatter(new String[]

{"System.String,mscorlib"});

 Message message = mq.EndReceive(asyncResult.AsyncResult);

 if (IsWidgetMessage(message))

 widgetQueue.Send(message);

 else if (IsGadgetMessage(message))

 gadgetQueue.Send(message);

 else

 dunnoQueue.Send(message);

 mq.BeginReceive();

 }

 protected bool IsWidgetMessage (Message message)

 {

 String text = (String)message.Body;

 return (text.StartsWith("W"));

 }

 protected bool IsGadgetMessage (Message message)

 {

 String text = (String)message.Body;

 return (text.StartsWith("G"));

 }

}

The example uses an event-driven message consumer by registering the method OnMessage as the
handler for messages arriving on the inQueue. This causes the .NET framework to invoke the
method OnMessage for every message that arrives on the inQueue. The message queue Formatter
property tells the framework what type of message we expect. In our example, we only deal with
simple string messages. OnMessage figures out where to route the message and tells .NET that it is
ready for the next message by calling the BeginReceive method on the queue. In order to keep the
code to a minimum, this simple router is not transactional, i.e. if the router crashes after it
consumed a message from the input channel and before it published it to the output channel, we
would lose a message. Later chapters will explain how to make endpoints transactional (see
Transactional Client).

Example: TIBCO MessageBroker

Message routing is such a common need that most EAI tool suites provide built-in tools to
simplify the construction of the routing logic. For example, in the C# example we had to code the
logic to read a message off the incoming queue, deserialize it, analyze it and republish it to the
correct outgoing channel. In many EAI tools this type of logic can be implemented with simple
drag-and-drop operations instead of writing code. The only code to write is the actual decision
logic for the Content-Based Router.

One such EAI tool that implements message routing is the TIBCO ActiveEnterprise suite. The
suite includes TIB/MessageBroker which is designed to create simple message flows that include
transformation and routing. The widget router that routes incoming messages based on the first
letter of the item number looks like this when implemented in TIB/MessageBroker:

We can read the message flow from left to right. The component on the left (represented by a
triangle pointing to the right) is the subscriber component that consumes messages off the
channel router.in. The channel name is specified in a properties box not shown in this picture.
The message content is directed to the message publisher (represented by the triangle on the
right side of the screen) The direct line from the Data output of the subscriber to the Message input
of the publisher represents the fact that a Content-Based Router does not modify the message. In
order to determine the correct output channel, the function ComputeSubject (in the middle)
analyzes the message content. The function uses a so-called dictionary (labeled as 'Map' in the
picture) as a translation table between message contents and the destination channel name. The
dictionary is configured with the following values:

Item Code Channel Name

G gadget

W widget

The ComputeSubject functions uses the first letter of the incoming message's order item number to
look up the destination channel from the dictionary. To form the complete name of the output
channel, it appends the dictionary result to the string "router.out", to form a channel name like
"router.out.widget". The result of this computation is passed to the publisher component on the
right to be used as the name of the channel. As a result, any order item whose item number starts
with a 'G' is routed to the channel router.out.gadget, whereas any item whose item number
starts with a 'W' is routed to the channel router.out.widget.

The TIBCO implementation of the ComputeSubject function looks like this:

 concat("router.out.",DGet(map,Upper(Left(OrderItem.ItemNumber,1))))

The function extracts the first letter of the order number (using the Left function) and converts it
to uppercase (using the Upper function). The function uses the result as the key to the dictionary
to retrieve the name of the outgoing channel (using the DGet function).

This example demonstrates the strengths of commercial EAI tools. Instead of a few dozen lines of
code we only need to code a single function to implement the widget router. Plus, we get features
like transactionality, thread management, systems management etc. for free. But this example
also highlights the difficulties of presenting a solution created with UI tools. We had to relegate

to screen shots to describe the solution. Many important settings are hidden in property fields
that are not shown on the screen. This can make it difficult to document a solution built using UI
tools.

Related patterns: Dynamic Router, Message Filter, Invalid Message Channel, Message Router, Pipes
and Filters, Publish-Subscribe Channel, Routing Slip, Transactional Client

Message Filter

Continuing with the order processing example, let's assume that company management
publishes price changes and promotions to large customers. Whenever a price for an item
changes, we send a message notifying the customer. We do the same if we are running a special
promotion, e.g. all widgets are 10% off in the month of November. Some customers may be
interested in receiving price updates or promotions only related to specific items. If I purchase
primarily gadgets, I may not be interested in knowing whether widgets are on sale or not.

How can a component avoid receiving uninteresting messages?

The most basic way for a component to receive only relevant messages is to subscribe only to
those channels that carry relevant messages. This options leverages the inherent routing abilities
of Publish-Subscribe Channels. A component receives only those messages that travel through
channels to which the component subscribes. For example, we could create one channel for
widget updates and another one for gadget updates. Customers would then be free to 'subscribe'
to one or the other channel or both. This has the advantage that new subscribers can join in
without requiring any changes to the system. However, subscription to Publish-Subscribe Channel
is generally limited to a simple binary condition: if a component subscribes to a channel, it
receives all messages on that channel. The only way to achieve finer granularity it to create more
channels. If we are dealing with a combination of multiple parameters, the number of channels
can quickly explode. For example, if we want to allow consumers to receive all messages that
announce all price cuts of widgets or gadgets by more than 5%, 10% or 15%, we already need 6 (2
item types multiplied by 3 threshold values) channels. This approach would ultimately become
difficult to manage and will consume significant resources due to the large number of allocated
channels. So we need to look for a solution that allows for more flexibility than channel
subscription.

We also need a solution than can accommodate frequent change. For example, me could modify a
Content-Based Router to route the message to more than one destination (a concept described in
the Recipient List). This predictive router sends only relevant messages to each recipient so that
the recipient does not have to take any extra steps. However, now we burden the message
originator with maintaining the preferences for each and every subscriber. If the list of recipients
or their preferences change quickly this solution would prove to be a maintenance nightmare.

We could simply broadcast the changes to all components and expect each component to filter
out the undesirable messages. However, this approach assumes that we have control over the

actual component. In many integration scenarios this is not the case because we deal with
packaged applications, legacy applications or applications that not under the control of our
organization. Also, incorporating filtering logic inside the component makes the component
dependent on a specific type of message. For example, if a customer uses a generic price watch
component he or she may want to use it for both widgets and gadgets, but with different criteria.

Use a special kind of Message Router, a Message Filter, to eliminate undesired messages from
a channel based on a set of criteria.

The Message Filter has only a single output channel. If the message content matches the criteria
specified by the Message Filter, the message is routed to the output channel. If the message
content does not match the criteria, the message is discarded.

In our example we would define a single Publish-Subscribe Channel that each customer is free to
listen on. The customer can then use a Message Filter to eliminate messages based on criteria of his
or her choosing, such as the type of item or the magnitude of the price change.

The Message Filter can be portrayed as a special case of a Content-Based Router that routes the
message either to the output channel or the null channel, a channel that discards any message
published to it. Such a channel would be similar to /dev/null present in many operating systems
or the Null Object .

Stateless vs. Stateful Message Filters

The widget and gadget example described a stateless Message Filter, i.e., the Message Filter
inspects a single message and decides whether to pass it on or not based solely on information
contained in that message. Therefore, the Message Filter does not need to maintain state across
messages and is considered stateless. Stateless components have the advantage that they allow us
run multiple instances of the component in parallel to speed up processing. However, a Message
Filter does not have to be stateless. For example, there are situations where the Message Filter
needs to keep track of the message history. A common example is the use of a Message Filter to
eliminate duplicate messages. Assuming that each message has a unique message identifier, the
Message Filter would store the identifiers of past messages to that it can recognize a duplicate
message by comparing each message's identifier with the list of stored identifiers.

Filtering Functions Built Into Messaging Systems

Some messaging systems incorporate aspects of a Message Filter inside the messaging
infrastructure. For example, some publish-subscribe systems allow you to define a hierarchical
structure for Publish-Subscribe Channels (many publish-subscribe systems including most JMS
implementations allow this). For example, one can publish promotions to the channel
'wgco.update.promotion.widget'. A subscriber can then use wildcards to subscribe to a specific
subset of messages, e.g. if a subscriber listens to the topic 'wgco.update.*.widget' he would
receive all updates (promotions and price changes) related to widgets. Another subscriber may
listen to 'wgco.update.promotion.*', which would deliver all promotions related to widgets and
gadgets, but no price changes. The channel hierarchy lets us refine the semantics of a channel by
appending qualifying parameters, so that instead of a customer subscribing to all updates,
customers can filter messages by specifying additional criteria as part of the channel name.
However, the flexibility provided by the hierarchical channel naming is still limited when
compared to a Message Filter. For example, a Message Filter could decide to only pass on 'price
change' message only if the price changed by more than 11.5%, something that would be hard to
express by means of channel names.

Other messaging systems provide API support for Selective Consumers inside the receiving
application. Message Selectors are expressions that evaluate header or property elements inside
an incoming message before the application gets to see the message. If the condition does not
evaluate to true the message is ignored and not passed on to the application logic. A message
selector acts as a Message Filter that is built into the application. While the use of a message
selector still requires you to modify the application (something that is often not possible in EAI),
the execution of the selection rules is built into the messaging infrastructure. One important
difference between a Message Filter and a Selective Consumer is that a consumer using a Selective
Consumer does not consume messages that do not match the specified criteria. On the other hand,
a Message Filter removes all messages from the input channel, publishing only those to the output
channel that match the specified criteria.

One advantage of registering the filter expression with the messaging infrastructure is the fact
that the infrastructure is able make smart internal routing decisions based on the filter criteria.
Let's assume that the message receiver sits on a different network segment from the message
originator (or even across the Internet). It would be rather wasteful to route the message all the
way to the Message Filter just to find out that we want to discard the message. On the other hand,
we want to use a Message Filter mechanism so that the recipients have control over the message
routing instead of a central Message Router. If the Message Filter is part of the API that the
messaging infrastructure provides to the message subscriber, the infrastructure is free to
propagate the filter expression closer to the source. This will maintain the original intent of
keeping control with the message subscriber, but allows the messaging infrastructure to avoid
unnecessary network traffic. This behavior resembles that of a dynamic Recipient List.

Using Message Filters to Implement Routing Fucntionality

We can use use a broadcast channel that routes a message to a set of Message Filters who eliminate
unwanted messages to implement functionality equivalent to that of a Content-Based Router. The
following diagrams illustrate the two options:

Option 1: Using a Content-Based Router

In this simple example, we have 2 receivers: receiver Gadget is only interested in gadget messages
while receiver widget is only interested in widget messages. The Content-Based Router evaluates
each message's content and routes it predictively to the appropriate receiver.

Option 2: Using a broadcast channel and a set of Message Filters

The second option broadcasts the message to a Publish-Subscribe Channel. Each recipient is
equipped with a Message Filter to eliminate unwanted messages. For example, the Widget receiver
employs a widget filter that lets only widget messages pass.

The following table characterizes some of the differences between the solutions:

Content-Based Router Pub-Sub Channel with Message Filter

Exactly one consumer receives each message. More than one consumer can consume a message.

Central control and maintenance -- predictive routing. Distributed control and maintenance -- reactive filtering.

Router needs to know about participants. Router may need

to be updated if participants are added or removed.

No knowledge of participants required. Adding or

removing participants is easy.

Often used for business transactions, e.g. orders.
Often used for event notifications / informational

messages.

Generally more efficient with queue-based channels. Generally more efficient with publish-subscribe channels.

How do we decide between the two options? In some cases, the decision is driven by the
required functionality, e.g. if we need the ability for multiple recipients to process the same
message, we need to use a Pub-Sub Channel with Message Filters. In most cases though, we
decide by which party has control over (and needs to maintain) the routing decision. Do we want
to keep central control or farm it out to the recipients? If message contain sensitive data that is
only to be seen by certain recipients we need to use a Content-Based Router -- we would not want
to trust the other recipients to filter out messages. For example, let's assume we offer special
discounts to out premium customers we would not send those to our non-premium customers
and expect them to ignore these special offers.

Network traffic considerations can drive the decision as well. If we have an efficient way to
broadcast information (e.g. using IP multicast on an internal network), using filters can be very
efficient and avoids the potential bottleneck of a single router. However, if this information is
routed over the Internet, we are limited to point-to-point connections. In this case a router is
much more efficient as it avoids sending individual messages to all participants. If we want to
pass control to the recipients but need to use a router for reasons of network efficiency we can
employ a dynamic Recipient List. This Recipient List allows recipients to express their preferences
and stores them in a database or a rule base. When a message arrives the Recipient List forwards
the message to all interested recipients whose criteria match the message.

Related patterns: Content-Based Router, Message Router, Selective Consumer, Publish-Subscribe
Channel, Recipient List

Dynamic Router

You are using a Message Router to route messages between multiple destinations.

How can you avoid the dependency of the router on all possible destinations while
maintaining its efficiency?

A Message Router is very efficient because it can route a message directly to the correct destination.
Other solutions to message routing, especially reactive filtering solutions (see Message Filter and
Routing Slip) are less efficient because they use a trial-and error approach: they route each
message to the first possible destination. If that destination is the correct one, it accepts the
message, otherwise the message is passed to the second possible destination and so on.

Distributed routing solutions also suffer from the risk that there are multiple recipients of a
message or none at all. Both situations can go undetected unless we use a central routing element.

In order to achieve this accuracy, the Message Router has to incorporate knowledge about each
destination and the rules for routing messages to the destination. This can turn the Message Router
into a maintenance burden if the list of possible destinations changes frequently.

Use a Dynamic Router, a Router that can self-configure based on special configuration
messages from participating destinations.

Besides the usual input and output channels the Dynamic Router uses an additional control channel.
During system start-up, each potential recipient sends a special message to the Dynamic Router on
this control channel, announcing its presence and listing the conditions under which it can
handle a message. The Dynamic Router stores the 'preferences' for each participant in a rule base.
When a message arrives, the Dynamic Router evaluates all rules and routes the message to the
recipient whose rules are fulfilled. This allows for efficient, predictive routing without the
maintenance dependency of the Dynamic Router on each potential recipient.

In the most basic scenario each participant announces its existence and routing preferences to the
Dynamic Router on start-up time. This requires each participant to be aware of the control queue
used by the Dynamic Router. It also requires the Dynamic Router to store the rules in a persistent
way. Otherwise, if the Dynamic Router fails and has to restart it would not be able to recover the
routing rules. Alternatively, the Dynamic Router could send a broadcast message to all possible
participants to trigger them to reply with the control message. This configuration is more robust
but requires the use of an additional Publish-Subscribe Channel.

It might make sense to enhance the control channel to allow participants to send both 'subscribe'
and 'unsubscribe' messages to the Dynamic Router. This would allow recipients to add or remove
themselves from the routing scheme during runtime.

Because the recipients are independent from each other, the Dynamic Router has to deal rules
conflicts, i.e. multiple recipients announcing interest in the same type of message. The Dynamic
Router can employ a number of different strategies to resolve such conflicts:

• Ignore control messages that conflict with existing messages. This option assures that the
routing rules are free of conflict. However, the state of the routing table may depend on the
sequence in which the potential recipients start up. If all recipients start up at the same time,
this may lead to unpredictable behavior because all recipients would announce their
preferences at the same time to the control queue.

• Send the message to the first recipient whose criteria match. This option allows the
routing table to contain conflicts, but resolves them as messages come in.

• Send the message to all recipients whose criteria match. This option is tolerant of conflicts
but turns the Dynamic Router into a Recipient List. generally, the behavior of a Content-Based
Router implies that is publishes one output message for each input message. This strategy
violates that rule.

The main liability of the Dynamic Router is the complexity of the solution and the difficulty of
debugging a dynamically configured system.

A Dynamic Router is another example where message-based middleware performs similar
functions to lower level IP networking. A Dynamic Router works very similar to the dynamic
routing tables used in IP routing to route IP packets between networks. The protocol used by the
recipients to configure the Dynamic Router is analogous to the IP Routing Information Protocol
(RIP -- for more information see [Stevens]).

A common use of the Dynamic Router is dynamic service discovery in service-oriented
architectures. If a client application wants to access a service it sends a message containing the
name of the service to the Dynamic Router. The Dynamic Router maintains a service directory, a list
of all services with their name and the channel they listen on. The Dynamic Router matches the
name of the requested service to the service directory and routes the message to the correct
channel. This setup allows services to be provided by more than one provider. The client
application can continue to send command messages to a single channel without having to worry
about the nature or location of the specified service provider.

[POSA] describes the Client-Dispatcher-Server pattern as a way for a client to request a specific
service without knowing the physical location of the service provider. The dispatcher uses a list
of registered services to establish a connection between the client and the physical server
implementing the requested service. The Dynamic Router is different from the Dispatcher in that it
can be more intelligent than a simple table lookup.

Example: Dynamic Router using C# and MSMQ

This example builds on the example presented in the Content-Based Router and enhances it to act
as a Dynamic Router. The new component listens on two channels, the inQueue and the
controlQueue. The control queue can receive messages of the format "X:QueueName", causing the
Dynamic Router to route all messages whose body text begins with the letter X to the queue
QueueName.

class DynamicRouter

{

 protected MessageQueue inQueue;

 protected MessageQueue controlQueue;

 protected MessageQueue dunnoQueue;

 protected IDictionary routingTable = (IDictionary)(new Hashtable());

 public DynamicRouter(MessageQueue inQueue, MessageQueue controlQueue, MessageQueue

dunnoQueue)

 {

 this.inQueue = inQueue;

 this.controlQueue = controlQueue;

 this.dunnoQueue = dunnoQueue;

 inQueue.ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);

 inQueue.BeginReceive();

 controlQueue.ReceiveCompleted += new

ReceiveCompletedEventHandler(OnControlMessage);

 controlQueue.BeginReceive();

 }

 protected void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)

 {

 MessageQueue mq = (MessageQueue)source;

 mq.Formatter = new System.Messaging.XmlMessageFormatter(new String[]

{"System.String,mscorlib"});

 Message message = mq.EndReceive(asyncResult.AsyncResult);

 String key = ((String)message.Body).Substring(0, 1);

 if (routingTable.Contains(key))

 {

 MessageQueue destination = (MessageQueue)routingTable[key];

 destination.Send(message);

 }

 else

 dunnoQueue.Send(message);

 mq.BeginReceive();

 }

 // control message format is X:QueueName as a single string

 protected void OnControlMessage(Object source, ReceiveCompletedEventArgs

asyncResult)

 {

 MessageQueue mq = (MessageQueue)source;

 mq.Formatter = new System.Messaging.XmlMessageFormatter(new String[]

{"System.String,mscorlib"});

 Message message = mq.EndReceive(asyncResult.AsyncResult);

 String text = ((String)message.Body);

 String [] split = (text.Split(new char[] {':'}, 2));

 if (split.Length == 2)

 {

 String key = split[0];

 String queueName = split[1];

 MessageQueue queue = FindQueue(queueName);

 routingTable.Add(key, queue);

 }

 else

 {

 dunnoQueue.Send(message);

 }

 mq.BeginReceive();

 }

 protected MessageQueue FindQueue(string queueName)

 {

 if (!MessageQueue.Exists(queueName))

 {

 return MessageQueue.Create(queueName);

 }

 else

 return new MessageQueue(queueName);

 }

}

This example uses a very simple conflict resolution mechanism -- last one wins. If two recipients
express interest in receiving messages that start with the letter 'X', only the second recipient will
receive the message because the hashmap stores only one queue for each key value. Also note
that the dunnoQueue can now receive two types of messages: incoming messages that have no
matching routing rules or control messages that do not match the required format.

Related patterns: Content-Based Router, Message Filter, Message Router, Publish-Subscribe Channel,
Recipient List, Routing Slip

Recipient List

A Content-Based Router allows us to route a message to the correct system based on message
content. This process is transparent to the original sender in the sense that the originator simply
sends the message to a channel, where the router picks it up and takes care of everything.

In some cases, though, we may want to specify one or more recipients for the message. A
common analogy are the recipient lists implemented in most e-mail systems. For each e-mail
message, the sender can specify a list of recipients. The mail system then ensures transport of the
message content to each recipient. An example from the domain of enterprise integration would
be a situation where a function can be performed by one or more providers. For example, we
may have a contract with multiple credit agencies to assess the credit worthiness of our
customers. When a small order comes in we may simply route the credit request message to one
credit agency. If a customer places a large order, we may want to route the credit request
message to multiple agencies and compare the results before making a decision. In this case, the
list of recipients depends on the dollar value of the order.

In another situation, we may want to route an order message to a select list of suppliers to obtain
a quote for the requested item. Rather than sending the request to all vendors, we may want to
control which vendors receive the request, possibly based on user preferences

How do we route a message to a list of dynamically specified recipients?

Because this problem is an extension to the problem that a Content-Based Router solves, some of
the same forces and alternatives described in that pattern come into play here as well.

Most messaging systems provide Publish-Subscribe Channels, which send a copy of a published
messages to each recipient who subscribes to the channel. The set of recipients is based on
subscription to the specific channel or subject. However, the list of active subscribers to a channel
is somewhat static and cannot change on a message-by-message basis.

Because subscription to a Publish-Subscribe Channels is binary (you are either subscribed to all
messages on the channel or none), each potential recipient would have to filter messages
incoming messages based on message content, most likely using a Message Filter or Selective
Consumer. This distributes the logic over who receives the message to the individual subscribers.
Going down this route we could maintain a central point of maintenance for the list of recipients
by attaching a list of intended recipients to the message. When the message is broadcast to all
possible recipients, each recipient would then look in the recipient list associated with the
message. If the recipient is not part of the recipient list, it will discard the message. The problem
with either approach its inefficiency by requiring each potential recipient to process every
message just to possibly discard it. The configuration also relies on a certain 'honor' system on
part of the recipients as we cannot really prevent a recipient from processing the message. This is
definitely not desirable in situations where we forward a request for quote to a select subset of
suppliers and expect others to ignore the message they are receiving.

We could also require the message originator to publish the message individually to each desired
recipient. In that case, though we would place the burden of delivery to all recipients on the
message originator. If we originator is a packaged application, this is generally not an option.
Also, it would embed decision logic inside the application which would couple the application
more tightly to the integration infrastructure. In many cases, the applications that are being
integrated are unaware of the fact that they even participate in an integration solution, so
expecting the application to contain message routing logic is not realistic.

Define a channel for each recipient. Then use a Recipient List to inspect an incoming message,
determine the list of desired recipients, and forward the message to all channels associated
with the recipients in the list.

The logic embedded in a Recipient List can be pictured as two separate parts even though the
implementation is often coupled together. The first part computes a list of recipients. The second
part simply traverses the list and sends a copy of the received message to each recipient. Just like
a Content-Based Router, the Recipient List usually does not modify the message contents.

A Recipient List Can Compute the Recipients (left) or Have Another Component Provide A List (right)

The recipient list can be derived from a number of sources. The creation of the list can be external
to the Recipient List so that the message originator or another component attaches the list to the
incoming message. The Recipient List only has to iterate through this ready-made list. In this
situation, the Recipient List usually removes the recipient list from the message to reduce the size
of the outgoing messages and prevent individual recipient from seeing who else is on the list.
Providing the list with the incoming message makes sense if the destinations of each message are
based on user selection.

In most cases, the Recipient List computes the list of recipients cased on the content of the message
and a set of rules embedded in the Recipient List. The rules may be hard-coded or configurable
(see below).

The Recipient List is subject to the same considerations regarding coupling as discussed under the
Message Router, pattern. Routing messages predictively to individual recipients can lead to tighter
coupling between components because a central has to have knowledge of a series of other
components.

In order for the Recipient List to control flow of information we need to make sure that recipients
cannot subscribe directly to the input channel into the Recipient List, bypassing any control the
Recipient List exercises.

Robustness

The Recipient List component is responsible for sending the incoming message to each recipient
specified in the recipient list. A robust implementation of the Recipient List must be able to
process the incoming message but only 'consume' it after all outbound messages have been
successfully sent. As such, the Recipient List component has to ensure that the complete
operation is atomic. If the Recipient List fails, it needs to be restartable. This can be accomplished
in multiple ways:

• Single transaction - The Recipient List can use transactional channels and places the message on the
outbound channels as part of a single transaction. It does not commit the messages until all messages are placed

on the channels. This guarantees that either all or no messages are sent.

• Persistent recipient list - The Recipient List can "remember" which messages it already sent so that on failure
and restart can send messages to the remaining recipients. The recipient list could be stored on disk or a database

so that it survives a crash of the Recipient List component.

• Idempotent receivers Alternatively, the Recipient List could simply resend all messages on restart. This
options requires all potential recipients to be idempotent (see Idempotent Receiver). Idempotent functions are

those that do not change the state of the system if they are applied to themselves, i.e. the state of the component is

not affected if the same message is processed twice. Messages can be inherently idempotent (e.g. the messages

"All Widgets on Sale until May 30" or "get me a Quote for XYZ widgets" are unlikely to do harm if they are

received twice) or the receiving component can be made idempotent by inserting a special Message Filter that

eliminates duplicate messages. Idempotence is very handy because it allows us to simply resend messages when

we are in doubt whether the recipient has received it. The TCP/IP protocol uses a similar mechanism to ensure

reliable message delivery without unnecessary overhead (see [Stevens]).

Dynamic Recipient List

Even though the intent of the Recipient List is to maintain control, it can be useful to let the
recipients themselves configure the rule set stored in the Recipient List, for example if recipients
want to subscribe to specific messages based on rules that can not easily be represented in form

of publish-subscribe channel topics. We mentioned these types of subscription rules under the
Message Filter Pattern, for example "accept the message if the price is less than $48.31". To
minimize network traffic we would still want to send the messages only to interested parties as
opposed to broadcasting it and letting each recipient decide whether to process the message or
not. To implement this functionality, recipients can send their subscription preferences to the
Recipient List via a special control channel. The Recipient List stores the preferences in a rules base
and uses it to compile the recipient list for each message. This approach gives the subscribers
control over the message filtering but leverages the efficiency of the Recipient List to distribute the
messages. This solution combines the properties of a Dynamic Router with a Recipient List to create
a Dynamic Recipient List (see picture).

A Dynamic Recipient List Is Configured by the Recipients via a Control Channel

This approach would work well for the 'price update' example discussed in the Message Filter
pattern. Since it assigns control to the individual recipients it is not suitable for the bidder
example mentioned at the beginning of this pattern, though.

Network (In)Efficiencies

Whether it is more efficient to send one message to all all possible recipients who then filter the
message or to send individual messages to each recipient depends very much on the
implementation of the messaging infrastructure. Generally, we can assume that the more
recipients a message has, the more network traffic it causes. However, there are exceptions. Some
publish-subscribe messaging systems are based on IP Multicast functionality and can route
messages to multiple recipients with a single network transmission (requiring retransmission
only for lost messages). IP Multicast takes advantage of Ethernet's bus architecture. When an IP
packet is sent across the network, all network adapters (NIC) on the same Ethernet segment
receive the packet. Normally, the NIC verifies the intended recipient of the packet and ignores it
if the packet is not addressed to the IP address the NIC is associated with. Multicast routing
allows all receivers that are part of a specified multicast group to read the packet of the bus. This
results in a single packet being able to be received by multiple NIC's who then pass the data to
the respective application associated with the network connection. This approach can be very
efficient on local networks due to the Ethernet bus architecture. It does not work across the
Internet where point-to-point TCP/IP connections are required. In general, we can say that the

further apart the recipients are, the more efficient it is to use a Recipient List vs. a Publish-Subscribe
Channel.

Whether a broadcast is more efficient depends not only on the network infrastructure, but also on
the proportion between the number of recipients that are supposed to process the message over
all recipients. If on average, most recipients are in the recipient list, it may be more efficient to
simply broadcast the message and have the (few) non-participants filter the message out. If
however, on average only a small portion of all possible recipients are interested in a particular
message, the Recipient List is almost guaranteed to be more efficient.

Recipent List vs. Pub-Sub and Filters

A number of times we have contrasted implementing the same functionality using predictive
routing with a Recipient List or using reactive filtering using a Publish-Subscribe Channel and an
array of Message Filters. Some of the decision criteria equal those of the the comparison between
the Content-Based Router and the Message Filter array. However, in case of a Recipient List, the
message can travel to multiple recipients, making the "filter" option more attractive.

Recipient List vs. MessageFilter Array

The following table compares the two solutions:

Content-Based Router Publish-Subscribe Channel with Recipient List

Central control and maintenance -- predictive routing. Distributed control and maintenance -- reactive filtering.

Router needs to know about participants. Router may need

to be updated if participants are added or removed (unless

using dynamic router, but at expense of losing control).

No knowledge of participants required. Adding or

removing participants is easy.

Often used for business transactions, e.g. request for

quote.

Often used for event notifications / informational

messages.

Generally more efficient if limited to queue-based

channels.

Can be more efficient with publish-subscribe channels

(depends on infrastructure).

If we send a message to multiple recipients we may need to reconcile the results later. For
example, if we send a request for a credit score to multiple credit agencies we should wait until
all results come back so that we can compare the results and choose the best alternative . With
other less critical functions we may just take the first available response to optimize message
throughput. These types of strategies are typically implemented inside an Aggregator.
Scatter-Gather describes situations where we start with a single message, send it to multiple
recipients and re-combine the responses into a single message.

A dynamic Recipient List can be used to implement a Publish-Subscribe Channel if a messaging
system provides only Point-to-Point Channels but no Publish-Subscribe Channel. The Recipient List
would keep a list of all Point-to-Point Channels that are subscribed to the 'topic', represented by
this specific instance of the Recipient List. This solution can also be useful if we need to apply
special criteria to allow a recipient to subscribe to a source of data. The Recipient List could easily
implement logic that controls access to the source data as long as the messaging system can
ensure that the recipients don't have direct access to the input channel into the Recipient List.

Example: Loan Broker

The composed messaging example in the interlude at the end of this chapter (see Introduction to
Composed Messaging Examples) uses a Recipient List to route a loan quote request only to qualified
banks. The interlude shows implementations of the Recipient List in Java, C# and TIBCO.

Example: Dynamic Recipient List in C# and MSMQ

This example builds on the Dynamic Router example to turn it into a dynamic Recipient List. The
code structure is very similar. The DynamicRecipientList listens on two input queues, one for
incoming messages (inQueue) and a control queue (controlQueue) where recipients can hand in
their subscription preferences. Messages on the control queue have to be formatted as a string
consisting of two parts separated by a colon (':'). The first part is a list of characters that indicate
the subscription preference of the recipient. The recipient expresses that it wants to receive all
messages starting with one of the specified letters. The second part of the control message
specifies the name of the queue that the recipient listens on. For example, the control message
"W:WidgetQueue" tells the DynamicRecipientList to route all incoming messages that begin with
"W" to the queue WidgetQueue. Likewise, the message "WQ:WidgetGadgetQueue" instructs the
DynamicRecipientList to route messages that start with either "W" or "G" to the queue
DynamicRecipientList.

class DynamicRecipientList

{

 protected MessageQueue inQueue;

 protected MessageQueue controlQueue;

 protected IDictionary routingTable = (IDictionary)(new Hashtable());

 public DynamicRecipientList(MessageQueue inQueue, MessageQueue controlQueue)

 {

 this.inQueue = inQueue;

 this.controlQueue = controlQueue;

 inQueue.ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);

 inQueue.BeginReceive();

 controlQueue.ReceiveCompleted += new

ReceiveCompletedEventHandler(OnControlMessage);

 controlQueue.BeginReceive();

 }

 protected void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)

 {

 MessageQueue mq = (MessageQueue)source;

 mq.Formatter = new System.Messaging.XmlMessageFormatter(new String[]

{"System.String,mscorlib"});

 Message message = mq.EndReceive(asyncResult.AsyncResult);

 if (((String)message.Body).Length > 0)

 {

 char key = ((String)message.Body)[0];

 ArrayList destinations = (ArrayList)routingTable[key];

 foreach (MessageQueue destination in destinations)

 {

 destination.Send(message);

 Console.WriteLine("sending message " + message.Body + " to " +

destination.Path);

 }

 }

 mq.BeginReceive();

 }

 // control message format is XYZ:QueueName as a single string

 protected void OnControlMessage(Object source, ReceiveCompletedEventArgs

asyncResult)

 {

 MessageQueue mq = (MessageQueue)source;

 mq.Formatter = new System.Messaging.XmlMessageFormatter(new String[]

{"System.String,mscorlib"});

 Message message = mq.EndReceive(asyncResult.AsyncResult);

 String text = ((String)message.Body);

 String [] split = (text.Split(new char[] {':'}, 2));

 if (split.Length == 2)

 {

 char[] keys = split[0].ToCharArray();

 String queueName = split[1];

 MessageQueue queue = FindQueue(queueName);

 foreach (char c in keys)

 {

 if (!routingTable.Contains(c))

 {

 routingTable.Add(c, new ArrayList());

 }

 ((ArrayList)(routingTable[c])).Add(queue);

 Console.WriteLine("Subscribed queue " + queueName + " for message " + c);

 }

 }

 mq.BeginReceive();

 }

 protected MessageQueue FindQueue(string queueName)

 {

 if (!MessageQueue.Exists(queueName))

 {

 return MessageQueue.Create(queueName);

 }

 else

 return new MessageQueue(queueName);

 }

}

The DynamicRecipientList uses a bit more clever (read complicated) way to store the recipient's
preferences. To optimize processing of incoming messages, the DynamicRecipientList maintains a
Hashtable keyed by the first letter of incoming messages. Unlike the Dynamic Router example, the
Hashtable contains not a single destination, but an Arraylist of all subscribed destinations. When
the DynamicRecipientList receives a message it locates the correct destination list from the
Hashtable and then iterates over the list to send one message to each destination.

This example does not use a dunnoChannel (see Content-Based Router or Dynamic Router) for
incoming messages that do not match any criteria. Typically, a Recipient List does not consider it
an error of there are zero recipients for a message.

This implementation does not allow recipients to unsubscribe. It also does not detect duplicate
subscription. For example, if a recipient subscribes twice for the same message type it will receive
duplicate messages. This is different from the typical publish-subscribe semantics where a
specific recipient can subscribe to one channel only once.The DynamicRecipientListcould easily
be changed to disallow duplicate subscriptions if that is desired.

Related patterns: Aggregator, Scatter-Gather, Introduction to Composed Messaging Examples,
Content-Based Router, Dynamic Router, Message Filter, Idempotent Receiver, Message Router, Selective
Consumer, Point-to-Point Channel, Publish-Subscribe Channel

Splitter

Many messages passing through an integration solution consist of multiple elements. For
example, an order placed by a customer consists of more than just a single line item. As outlined
in the description of the Content-Based Router, each line item may need to be handled by a
different inventory system. Thus, we need to find an approach to process a complete order, but
treat each order item contained in the order individually.

How can we process a message if it contains multiple elements, each of which may have to be
processed in a different way?

The solution to this routing problem should be generic enough so that it can deal with varying
numbers and types of elements. For example, an order can contain any number of items, so we
would not want to create a solution that assumes a fixed number of items. Nor would we want to
make too many assumptions about what type of items the message contains. For example, if the
Widget & Gadget company starts selling books tomorrow, we want to minimize the impact on
the overall solution.

We also want to maintain control over the order items and avoid duplicated or lost processing.
For example, we could send the complete order to each order management system using a
Publish-Subscribe Channel and let it pick out the items that it can handle. This approach has the
same disadvantages described in the Content-Based Router. It would be very difficult to avoid
missing or duplicate shipment of individual items.

The solution should also be efficient in its usage of network resources. Sending the complete
order message to each system that may only process a portion of the order can cause additional
message traffic, especially as the number of destinations increases.

To avoid sending the complete message multiple times we could split the original message into
as many messages as there are inventory systems. Each message would then contain only the line
items that can be handled by the specific system. This approach is similar to a Content-Based
Router except we are splitting the message and the routing the individual messages. This
approach would be efficient but ties the solution to knowledge about the specific item types and
associated destinations. What if we want to change the routing rules? We would now have to

change this more complex "itemrouter" component. We use the Pipes and Filters architectural to
break out processing into well-defined, composable components as opposed to lumping multiple
functions together, so we should be able to take advantage of this architecture here as well.

Use a Splitter to break out the composite message into a series of individual messages, each
containing data related to one item.

use a Splitter that consumes one message containing a list of repeating elements, each of which
can be processed individually. The Splitter publishes a one message for each single element (or a
subset of elements) from the original message.

In many cases, we want to repeat some common elements in each resulting message. These extra
elements are required to make the resulting child message self-contained and therefore enables
state-less processing of the child message. It also allows reconciliation of associated child
messages later on. For example, each order item message should contain a copy of the order
number so we can properly associate the order item back to the order and all associated entities
such as the customer placing the order (see picture).

Iterating Splitters

As mentioned earlier, many enterprise integration systems store message data in a tree structure.
The beauty of a tree structure is that it is recursive. Each child node underneath a node is the root
of another subtree. This allows us to extract pieces of a message tree and process them further as
a message tree on their own. If we use message trees , the Splitter can be easily be configured to
iterate through all children under a specified node and send one message for each child node.
Such a Splitter implementation would be completely generic because it does not make any

assumptions about the number and type of child elements. Many commercial EAI tools provide
this type of functionality under the term Iterator or Sequencer. Since we are trying to avoid vendor
vocabulary to reduce potential for confusion, we call this style of Splitter an Iterating Splitter.

Static Splitters

Using a Splitter is not limited to repeating elements, though. A large message may be split into
individual messages to simplify processing. For example, a number of B2B information exchange
standards specify very comprehensive message formats. These huge messages are often a result
of design-by-committee and large portions of the messages may rarely be used. In many
instances it is helpful to split these mega-messages into individual messages, each centered
around a specific portion of the large message. This makes subsequent transformations much
easier to develop and can also save network bandwidth since we can route smaller messages to
those components that deal only with a portion of the mega-message. The resulting messages are
often published to different channels rather than the same channel because they represent
messages of different sub-types. In this scenario, the number of resulting messages is generally
fixed whereas in the more general Splitter assumes a variable number of items. To distinguish this
style of Splitter we call it Static Splitter. A Static Splitter is functionally equivalent to using a
broadcast channel followed by a set of Content Filters.

Ordered or Unordered Child Messages

In some cases it is useful to equip child messages with sequence numbers to improve massage
traceability and simplify the task of an Aggregator. Also, it is a good idea to equip each message
with a reference to the original (combined) message so that processing results from the individual
messages can be correlated back to the original message. This reference functions as a Correlation
Identifier.

If message envelopes are used (see Envelope Wrapper), each new message should be supplied with
its own message envelope to make it compliant with the messaging infrastructure. For example,
if the infrastructure requires a message to carry a timestamp in the message header, we would
propagate the timestamp of the original message to each message's header.

Example: Splitting an XML Order Document in C#

Many messaging systems use XML messages. For example, let's assume an incoming order look
as follows:

<order>

 <date>7/18/2002</date>

 <ordernumber>3825968</ordernumber>

 <customer>

 <id>12345</id>

 <name>Joe Doe</name>

 </customer>

 <orderitems>

 <item>

 <quantity>3.0</quantity>

 <itemno>W1234</itemno>

 <description>A Widget</description>

 </item>

 <item>

 <quantity>2.0</quantity>

 <itemno>G2345</itemno>

 <description>A Gadget</description>

 </item>

 </orderitems>

</order>

We want the Splitter to split the order into individual order items. For the example document the
Splitter should generate the following two messages:

<orderitem>

 <date>7/18/2002</date>

 <ordernumber>3825968</ordernumber>

 <customerid>12345</customerid>

 <quantity>3.0</quantity>

 <itemno>W1234</itemno>

 <description>A Widget</description>

</orderitem>

<orderitem>

 <date>7/18/2002</date>

 <ordernumber>3825968</ordernumber>

 <customerid>12345</customerid>

 <quantity>2.0</quantity>

 <itemno>G2345</itemno>

 <description>A Gadget</description>

</orderitem>

Each orderitem message is being enriched with the order date, the order number, and the
customer ID. The inclusion of the customer ID and the order date make the message
self-contained and keeps the message consumer from having to store context across individual
messages. This is important if the messages are to be processed by stateless servers. The addition
of the ordernumber field is necessary for later re-aggregation of the items (see Aggregator. In this
example we assume that the specific order of items is not relevant for completion of the order, so
we did not have to include an item number.

Let's see what the Splitter code looks like in C#.

class XMLSplitter

{

 protected MessageQueue inQueue;

 protected MessageQueue outQueue;

 public XMLSplitter(MessageQueue inQueue, MessageQueue outQueue)

 {

 this.inQueue = inQueue;

 this.outQueue = outQueue;

 inQueue.ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);

 inQueue.BeginReceive();

 outQueue.Formatter = new ActiveXMessageFormatter();

 }

 protected void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)

 {

 MessageQueue mq = (MessageQueue)source;

 mq.Formatter = new ActiveXMessageFormatter();

 Message message = mq.EndReceive(asyncResult.AsyncResult);

 XmlDocument doc = new XmlDocument();

 doc.LoadXml((String)message.Body);

 XmlNodeList nodeList;

 XmlElement root = doc.DocumentElement;

 XmlNode date = root.SelectSingleNode("date");

 XmlNode ordernumber = root.SelectSingleNode("ordernumber");

 XmlNode id = root.SelectSingleNode("customer/id");

 XmlElement customerid = doc.CreateElement("customerid");

 customerid.InnerText = id.InnerXml;

 nodeList = root.SelectNodes("/order/orderitems/item");

 foreach (XmlNode item in nodeList)

 {

 XmlDocument orderItemDoc = new XmlDocument();

 orderItemDoc.LoadXml("<orderitem/>");

 XmlElement orderItem = orderItemDoc.DocumentElement;

 orderItem.AppendChild(orderItemDoc.ImportNode(date, true));

 orderItem.AppendChild(orderItemDoc.ImportNode(ordernumber, true));

 orderItem.AppendChild(orderItemDoc.ImportNode(customerid, true));

 for (int i=0; i < item.ChildNodes.Count; i++)

 {

 orderItem.AppendChild(orderItemDoc.ImportNode(item.ChildNodes[i],

true));

 }

 outQueue.Send(orderItem.OuterXml);

 }

 mq.BeginReceive();

 }

}

Most of the code centers around the XML processing. The XMLSplitter uses the same
Event-Driven Consumer structure as the other routing examples. Each incoming message invokes
the method OnMessage. Onmessage converts the message body into an XML document for
manipulation. First, we extract the relevant values from the order document. Then, we iterate
over each <item> child element. We do this by specifying the XPath expression
/order/orderitems/item. A simple XPath expression is very similar to a file path -- it descends
down the document tree, matching the element names specified in the path. For each <item> we
assemble a new XML document, copying the fields carried over from the order and the item's
child nodes.

Example: Splitting an XML Order Document in C# and XSL

Instead of manipulating XML nodes and elements manually, we can also create an XSL document
to transform the incoming XML into the desired format and then create output messages from
the transformed XML document. That is more maintainable when the document format is likely
to change. All we have to do is change the XSL transformation without any changes to the C#
code.

The new code uses the Transform method provided by the XslTransform class to convert the input
document into an intermediate document format. The intermediate document format has one
child element orderitem for each resulting message. The code simply traverses all child elements
and publishes one message for each element.

class XSLSplitter

{

 protected MessageQueue inQueue;

 protected MessageQueue outQueue;

 protected String styleSheet = "..\\..\\Order2OrderItem.xsl";

 protected XslTransform xslt;

 public XSLSplitter(MessageQueue inQueue, MessageQueue outQueue)

 {

 this.inQueue = inQueue;

 this.outQueue = outQueue;

 xslt = new XslTransform();

 xslt.Load(styleSheet, null);

 outQueue.Formatter = new ActiveXMessageFormatter();

 inQueue.ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);

 inQueue.BeginReceive();

 }

 protected void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)

 {

 MessageQueue mq = (MessageQueue)source;

 mq.Formatter = new ActiveXMessageFormatter();

 Message message = mq.EndReceive(asyncResult.AsyncResult);

 try

 {

 XPathDocument doc = new XPathDocument(new

StringReader((String)message.Body));

 XmlReader reader = xslt.Transform(doc, null, new XmlUrlResolver());

 XmlDocument allItems = new XmlDocument();

 allItems.Load(reader);

 XmlNodeList nodeList =

allItems.DocumentElement.GetElementsByTagName("orderitem");

 foreach (XmlNode orderItem in nodeList)

 {

 outQueue.Send(orderItem.OuterXml);

 }

 }

 catch (Exception e) { Console.WriteLine(e.ToString()); }

 mq.BeginReceive();

 }

}

We read the XSL document from a separate file to make it easier to edit and test. Also, it allows
us to change the behavior of the Splitter without recompiling the code.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

 <xsl:template match="/order">

 <orderitems>

 <xsl:apply-templates select="orderitems/item"/>

 </orderitems>

 </xsl:template>

 <xsl:template match="item">

 <orderitem>

 <date>

 <xsl:value-of select="parent::node()/parent::node()/date"/>

 </date>

 <ordernumber>

 <xsl:value-of select="parent::node()/parent::node()/ordernumber"/>

 </ordernumber>

 <customerid>

 <xsl:value-of select="parent::node()/parent::node()/customer/id"/>

 </customerid>

 <xsl:apply-templates select="*"/>

 </orderitem>

 </xsl:template>

 <xsl:template match="*">

 <xsl:copy>

 <xsl:apply-templates select="@* | node()"/>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

XSL is a declarative language, so it is not easy to make sense of unless you have written a fair bit
of XSL yourself (or read a good XSL book like [Tennison]). This XSL transform looks for any
occurrence of the order element (there is one in our document). Once it finds this element it
creates a new root element for the output document (all XML documents have to have a single
root element) and goes on to process all item elements inside the orderitems element of the input
document. The XSL specifies a new 'template' for each item that is found. This template copies
the date, ordernumber and customerid from order element (which is the item's parent's parent)
and then appends any element from the item. The resulting document has one orderitem element
for each item element in the input document. This make it easy for the C# code to iterate over the
elements and publish them as messages

We were curious as how to the two implementations would perform. We decided to run a real
quick, non-scientific performance test. We simply piped 5000 order messages into the input
Queue, started the Splitter and measured the time it took for 10,000 item messages to arrive on the
output queue. We executed this all inside a single program on one machine using local message
queues. We measured 7 seconds for the XMLSplitter that uses the DOM to extract elements and
5.3 seconds for the XSL-based Splitter. To establish a baseline, a dummy processor that consumes
one message of the input queue and publishes the same message twice on the output queue took
just under 2 seconds for 5000 messages. This time includes the dummy processor consuming
5,000 messages and publishing 10,000, and the test harness consuming the 10,000 messages the
processor published. So it looks like the XSL manipulation is a little more efficient than moving
elements around 'by hand' (if we subtract the baseline, the XSL is about 35% faster). We are sure
that either program could be tuned for maximum performance, but it was interesting to see them
execute side-by-side.

Related patterns: Aggregator, Content-Based Router, Content Filter, Correlation Identifier, Envelope
Wrapper, Event-Driven Consumer, Pipes and Filters, Publish-Subscribe Channel

Aggregator

A Splitter is useful to break out a single message into a sequence of sub-messages that can be
processed individually. Likewise, a Recipient List or a Publish-Subscribe Channel is useful to
forward a request message to multiple recipients in parallel in order to get multiple responses to
choose from. In most of these scenarios, the further processing depends on successful processing
of the sub-messages. For example, we want to select the best bid from a number of vendor
responses or we want to bill the client for an order after all items have been pulled from the
warehouse.

How do we combine the results of individual, but related messages so that they can be
processed as a whole?

The asynchronous nature of a messaging system makes collecting information across multiple
messages challenging. How many messages are there? If we broadcast a message to a broadcast
channel, we may not know how many recipients listened to that channel and therefore cannot
know how many responses to expect.

Even if we use a Splitter, the response messages may not arrive in the same sequence they were
created in. As individual messages can be routed through different network paths, the messaging
infrastructure can usually guarantee the delivery of each message, but may not be able to
guarantee the order in which the individual messages are delivered. In addition, the individual
messages may be processed by different parties with different processing speeds. As a result,
response messages may be delivered out of order (see the Resequencer for a more detailed
description of this problem).

In addition, most messaging infrastructures operate in a "guaranteed, ultimately" delivery mode.
That means, that messages are guaranteed to be delivered to the intended recipient, but there are
no guarantees as to when the message will be delivered. How long should we wait for a message?
If we wait too long, we may delay subsequent processing. If we decide to move ahead without
the missing message, we have to find a way to work with incomplete information. Even so, what
should we do when the missing message (or messages) finally arrives? In some cases we may be
able to process the message separately, but in general other cases that may lead to duplicate
processing. On the other hand, if we ignore the late-comer messages, we permanently lose the
information content contained in these messages.

All these issues can complicate the combined processing of multiple, but related messages. It
would be much easier to implement the business logic if a separate component could take care of
these complexities and pass a single message to the subsequent processing business that depends
on the presence of all individual sub-messages.

Use a stateful filter, an Aggregator, to collect and store individual messages until a complete
set of related messages has been received. Then, the Aggregator publishes a single message
distilled from the individual messages.

The Aggregator is a special Filter that receives a stream of messages and identifies messages that
are correlated. Once a complete set of messages has been received (more on how to decide when
a set is 'complete' below), the Aggregator collects information from each correlated message and
publishes a single, aggregated message to the output channel for further processing.

Unlike most of the previous routing patterns, the Aggregator is a stateful component. Simple
routing patterns like the Content-Based Router are often stateless, which means the component
processes incoming messages one-by-one and does not have to keep any information between
messages. After processing a message, the component is in the same state as it was before the
message arrived. Therefore, we call such a component stateless. The Aggregator cannot be
stateless since it needs to store each incoming message until all the messages that belong together
have been received. Then, it needs to distill the information associated with each message into the
aggregate message. The Aggregator does not necessarily have to store each incoming message in
its entirety. For example, if we are processing incoming auction bids, we may only need to keep
the highest bid and the associated bidder ID without having to keep the history of all individual
bid messages. Still, the Aggregator has to store information across messages and is therefore
stateful.

When designing an Aggregator, we need to specify the following items:

• Correlation - which incoming messages belong together?
• Completeness Condition - when are we ready to publish the result message?
• Aggregation Algorithm - how do we combine the received messages into a single result

message?

Correlation is typically achieved by either the type of the incoming messages or an explicit
Correlation Identifier. Common choices for the completeness condition and aggregation algorithm
are described below.

Implementation Details

Due to the event-driven nature of a messaging system, the Aggregator may receive related
messages at any time and in any order. To associate messages, the Aggregator maintains a list of
active aggregates, i.e. aggregates for which the Aggregator has received some messages already.
When the Aggregator receives a new message, it needs to check whether the message is part of an
already existing aggregate. If no aggregate related to this message exists, the Aggregator assumes
that this is the first message of a a set and creates a new aggregate. It then adds the message to
the new aggregate. If an aggregate already exists, the Aggregator simply adds the message to the
aggregate. After adding the message, the Aggregator evaluates the completeness condition for the
aggregate (described in more detail below). If the condition evaluates to true, a new aggregate
message is formed from the aggregate and published to the output channel. If the completeness
condition evaluates to false, no message is published and the Aggregator keeps the aggregate
active for additional messages to arrive. The following diagram illustrates this strategy. In this
simple scenario, we assume an aggregate to be complete whenever it contains at least three
messages.

This strategy creates a new aggregate whenever it receives a message that cannot be associated to
an existing aggregate. Therefore, the Aggregator does not need prior knowledge of the aggregates
that is may produce. Accordingly, we call this variant a Self-starting Aggregator.

Depending on the aggregation strategy the Aggregator may have to deal with the situation that an
incoming message belongs to an aggregate that has already been closed out, i.e. after the
aggregate message has been published. In order to avoid starting a new aggregate, the Aggregator
needs to keep a list of aggregates that have been closed out. We need to provide a mechanism to
purge this list periodically so that it does not grow indefinitely. This assumes that we can make
some basic assumptions about the time frame in which related messages will arrive. Since we do
not need to store the complete aggregate, but just the fact that it has been closed, we can store the
list of closed aggregates quite efficiently and build a sufficient safety margin into the purge
algorithm. We can also use Message Expiration to ignore messages that have been delayed for an
inordinate amount of time.

In order to increase the robustness of the overall solution we can also allow the Aggregator to
listen on a specific control channel which allows the manual purging of all active aggregates or a
specific one. This feature can be useful if we want to recover from an error condition without
having to restart the Aggregator component. Along the same lines, allowing the Aggregator to
publish a list of active aggregates to a special channel upon request can be a very useful
debugging feature. Both functions are excellent examples of the kind of features typically
incorporated into a Control Bus.

Aggregation Strategies

There are a number of strategies for aggregator completeness conditions. The available strategies
primarily depend on whether we know how many messages to expect or not. The Aggregator
could know the number of sub-messages to expect because it received a copy of the original
composite message or because each individual message contains the total count (as described in

the Splitter example). Depending on how much the Aggregator knows about the message stream,
the most common strategies are as follows:

• "Wait for All" Wait until all responses are received. This scenario is most likely in the
order example we discussed earlier. An incomplete order may not be meaningful. So if
not all items are received within a certain time-out period an error condition should be
raised by the Aggregator. This approach may give us the best basis for decision-making,
but may also be the slowest and most brittle (plus we need to know how many messages
to expect). A single missing or delayed message will prevent further processing of the
whole aggregate. Resolving such error conditions can be a complicated matter in
loosely-coupled asynchronous systems because the asynchronous flow of messages
makes it hard to reliably detect error conditions (how long should we wait before a
message is "missing"?). One way to deal with missing messages is to re-request the
message. However, this approach requires the Aggregator to know the source of the
message, which may introduce additional dependencies between the Aggregator and
other components.

• "Time Out" Wait for a specified length of time for responses and then make a decision by
evaluating those responses received within that time limit. If no responses are received,
the system may report an exception or retry. This heuristic is useful if incoming responses
are scored and only the message (or a small number of messages) with the highest score
is used. This approach is common in "bidding" scenarios.

• "First Best" Wait only until the first (fastest) response is received and ignore all other
responses. This approach is the fastest, but ignores a lot of information. It may be
practical in a bidding or quoting scenario where response time is critical.

• "Time Out with Override" Wait for a specified amount of time or until a message with a
preset minimum score has been received. In this scenario, we are willing to abort early if
we find a very favorable response; otherwise, we keep on going until time is up. If no
clear winner was found at that point, rank ordering among all the messages received so
far occurs.

• "External Event" Sometimes the aggregation is concluded by the arrival of an external
business event. For example, in the financial industry, the end of the trading day may
signal the end of an aggregation of incoming price quotes. Using a fixed timer for such an
event reduces flexibility because it does not other variability. Also, a designated business
even in form of an Event Message allows for central control of the system. The Aggregator
can listen for the Event Message on a special control channel or receive a specially
formatted message that indicates the end of the aggregation.

Closely tied to the selection of a completeness condition is the selection of the aggregation
algorithm. The following strategies are common to condense multiple messages into a single
message:

• Select the "best" answer. This approach assumes that there is a single best answer, e.g.
the lowest bid for an identical item. This makes it possible for the Aggregator to make the
decision and only pass the "best" message on. However, in real life, selection criteria are

rarely this simple. For example, the "best" bid for an item may depend on time of delivery,
the number of available items, whether the vendor is on the preferred vendor list etc.

• Condense data. An Aggregator can be used to reduce message traffic from a high-traffic
source. In these cases it may make sense to compute an average of individual messages or
add numeric fields from each message into a single message. This works best if each
message represents a numeric value, for example, the number of orders received.

• Collect data for later evaluation. it is not always possible to for an Aggregator to make the
decision of how to select the best answer. In those cases it makes still sense to use an
Aggregator to collect the individual messages and combine them into a single message.
This message may simply be a compilation of the individual's messages data. The
aggregation decision may be made later by a separate component or a human being.

In many instances, the aggregation strategy is driven by parameters. For example, a strategy that
waits for a specified amount of time can be configured with the maximum wait time. Likewise, if
the strategy is to wait until an offer exceeds a specific threshold we will most likely let the
Aggregator know in advance what the desired threshold is. If these parameters are configurable at
run-time, an Aggregator may feature an additional input that can receive control messages such as
these parameter settings. The control messages may also contain information such as the number
of correlated messages to expect, which can help the Aggregator implement more effective
completion conditions. In such a scenario, the Aggregator does not simply start a new aggregate
when the first message arrives, but rather receives up-front information related to an expected
series of messages. This information can be a copy of the original request message (e.g., an
Scatter-Gather message), augmented by any necessary parameter information. The Aggregator then
allocates a new aggregate and stores the parameter information with the aggregate (see figure).
When the individual messages come in, they are associated with the corresponding aggregate.
We call this variation an Initialized Aggregator as opposed to the Self-starting Aggregator. This
configuration is obviously only possible if we have access to the originating message, which may
not always be the case.

Aggregators are useful in many applications. The Aggregator is often coupled with a Splitter or a
Recipient List to form a composite pattern. See Composed Message Processor and Scatter-Gather for a
more detailed description of these composite patterns.

Example: Loan Broker

The composed messaging example in the interlude at the end of this chapter (see Introduction to
Composed Messaging Examples) uses an Aggregator to select the best loan quote from the loan quote
messages returned by the banks. The loan broker example uses an initialized Aggregator -- the
Recipient List informs the Aggregator of the number of quote messages to expect. The interlude
shows implementations of the Aggregator in Java, C# and TIBCO.

Example: Aggregator as Missing Message Detector

Joe Walnes showed me a creative use of an Aggregator. His system sends a message through a
sequence of components, which are unfortunately quite unreliable. Even using Guaranteed
Delivery will not correct this problem because typically the systems themselves fail after the
consumed a message. Because the applications are not Transactional Clients, the
message-in-progress is lost. To help remedying this situation, Joe routes an incoming through
two parallel paths -- once through the required, but unreliable components and once around the
components using Guaranteed Delivery. An Aggregator recombines the messages from the two
paths (see picture).

An Aggregator with Time-out Detects Missing Messages

The Aggregator uses a "Time Out with Override" completeness condition, which means that the
Aggregator completes if either the time-out is reached or the two associated message have been
received. The aggregation algorithm depends on which condition is fulfilled first. If two
messages are received, the processed message is passed on without modification. If the time-out
event occurs, we know that one of the components failed and "ate" the message. As a result, we
instruct the Aggregator to publish an error message that alerts the operators that one of the
components has failed. Unfortunately, the components have to be restarted manually, but a more
sophisticated configuration could likely restart the component and re-send any lost messages.

Example: Aggregator in JMS

This example show the implementation of an Aggregator using the Java Messaging Service (JMS)
API. The Aggregator receives bid messages on one channel, aggregates all related bids and

publishes a message with the lowest bid to another channel. Bids are correlated through an
Auction ID property that acts as a Correlation Identifier for the messages. The aggregation strategy
is to receive a minimum of 3 bids. The Aggregator is self-starting and does not require external
initialization.

The Aggregator Example Selects the Lowest Bid

The solution consists of the following main classes:

• Aggregator - contains logic to receive messages, aggregate them and send result
messages. Interfaces with aggregates via the Aggregate interface.

• AuctionAggregate - implements the Aggregate interface. This class acts as an
Adapter (see [GoF]) between the Aggregate interface and the Auction class. This
setup allows the Auction class to be free of references to the JMS API.

• Auction - a collection of related bids that have been received. The Auction class
implements the aggregation strategy, e.g. finding the lowest bid and
determining when the aggregate is complete.

• Bid - is a convenience class that holds the data items associated with a bid. We
convert incoming message data into a bid object so that we can access the bid
data through a strongly-typed interface, making the the Auction logic
completely independent from the JMS API.

The code of the solution is the Aggregator class. This class requires two JMS destinations, an input
destination and an output destination. Destination is the JMS abstraction for a queue or a topic
(Publish-Subscribe Channel). This abstraction allows us to write JMS code independent from the
type of channel. This feature can be very useful for testing and debugging. For example, during
testing we may use publish-subscribe topics so that we can easily "listen in" on the message
traffic. In production may want to switch to queues.

public class Aggregator implements MessageListener

{

 static final String PROP_CORRID = "AuctionID";

 Map activeAggregates = new HashMap();

 Destination inputDest = null;

 Destination outputDest = null;

 Session session = null;

 MessageConsumer in = null;

 MessageProducer out = null;

 public Aggregator (Destination inputDest, Destination outputDest, Session session)

 {

 this.inputDest = inputDest;

 this.outputDest = outputDest;

 this.session = session;

 }

 public void run()

 {

 try {

 in = session.createConsumer(inputDest);

 out = session.createProducer(outputDest);

 in.setMessageListener(this);

 } catch (Exception e) {

 System.out.println("Exception occurred: " + e.toString());

 }

 }

 public void onMessage(Message msg)

 {

 try {

 String correlationID = msg.getStringProperty(PROP_CORRID);

 Aggregate aggregate = (Aggregate)activeAggregates.get(correlationID);

 if (aggregate == null) {

 aggregate = new AuctionAggregate(session);

 activeAggregates.put(correlationID, aggregate);

 }

 //--- ignore message if aggregate is already closed

 if (!aggregate.isComplete()) {

 aggregate.addMessage(msg);

 if (aggregate.isComplete()) {

 MapMessage result = (MapMessage)aggregate.getResultMessage();

 out.send(result);

 }

 }

 } catch (JMSException e) {

 System.out.println("Exception occurred: " + e.toString());

 }

 }

}

The Aggregator is a Event-Driven Consumer and implements the MessageListener interface which
requires it to expose the onMessage method. Setting the current instance of the Aggregator as the
message listener for the MessageConsumer causes JMS to invoke the method onMesssage every time
a new message is received on the destination specified by the MessageConsumer. For each
incoming message the Aggregator extracts the correlation ID (stored as a message property) and
checks whether an active aggregate exists for this correlation ID. If no aggregate is found, the
Aggregator instantiates a new AuctionAggregate. The Aggregatorthen checks whether the
aggregate is still active (i.e. not complete). If the aggregate is no longer active, it discard the
incoming message. If the aggregate is active, it adds the message to the aggregate and tests

whether the termination condition has been fulfilled. If so, it gets the best bid entry and publishes
it.

The Aggregator code is very generic and depends on this specific example application only in two
lines of code. First, it assumes that the correlation ID is stored in the message property AuctionID.
Second, it creates an instance of the class AuctionAggregate. We could avoid this reference if we
used a factory that returns an object of type Aggregate and internally creates an instance of type
AuctionAggregate. Since this is a book on enterprise integration and not on object-oriented design,
we kept things simple and let this dependency pass.

The AuctionAggregate class needs to implement the Aggregate interface. The interface is rather
simple, specifying only three methods. One to add a new message (addMessage), one to determine
whether the aggregate is complete (isComplete) and one to get the best result (getBestMessage).

public interface Aggregate {

 public void addMessage(Message message);

 public boolean isComplete();

 public Message getResultMessage();

}

Instead of implementing the aggregation strategy inside the AuctionAggreagte class, we decided
to create a separate class Auction that implements the aggregation strategy but is not dependent
on the JMS API:

public class Auction

{

 ArrayList bids = new ArrayList();

 public void addBid(Bid bid)

 {

 bids.add(bid);

 System.out.println(bids.size() + " Bids in auction.");

 }

 public boolean isComplete()

 {

 return (bids.size() >= 3);

 }

 public Bid getBestBid()

 {

 Bid bestBid = null;

 Iterator iter = bids.iterator();

 if (iter.hasNext())

 bestBid = (Bid) iter.next();

 while (iter.hasNext()) {

 Bid b = (Bid) iter.next();

 if (b.getPrice() < bestBid.getPrice()) {

 bestBid = b;

 }

 }

 return bestBid;

 }

}

The Auction is actually quite simple. It provides three methods similar to the Aggregate interface,
but the method signatures differ in that they use the strongly typed Bid class instead of the
Message class. For this example, the aggregation strategy is very simple, simply waiting until
three bids have been received. However, by separating the aggregation strategy from the Auction
class and the JMS API is is easy to enhance the Auction class to incorporate more sophisticated
logic.

The AuctionAggregate class acts as an Adapter between the Aggregate interface and the Auction
class. An adapter is a class that converts the interface of a class into another interface.

public class AuctionAggregate implements Aggregate {

 static String PROP_AUCTIONID = "AuctionID";

 static String ITEMID = "ItemID";

 static String VENDOR = "Vendor";

 static String PRICE = "Price";

 private Session session;

 private Auction auction;

 public AuctionAggregate(Session session)

 {

 this.session = session;

 auction = new Auction();

 }

 public void addMessage(Message message) {

 Bid bid = null;

 if (message instanceof MapMessage) {

 try {

 MapMessage mapmsg = (MapMessage)message;

 String auctionID = mapmsg.getStringProperty(PROP_AUCTIONID);

 String itemID = mapmsg.getString(ITEMID);

 String vendor = mapmsg.getString(VENDOR);

 double price = mapmsg.getDouble(PRICE);

 bid = new Bid(auctionID, itemID, vendor, price);

 auction.addBid(bid);

 } catch (JMSException e) {

 System.out.println(e.getMessage());

 }

 }

 }

 public boolean isComplete()

 {

 return auction.isComplete();

 }

 public Message getResultMessage() {

 Bid bid = auction.getBestBid();

 try {

 MapMessage msg = session.createMapMessage();

 msg.setStringProperty(PROP_AUCTIONID, bid.getCorrelationID());

 msg.setString(ITEMID, bid.getItemID());

 msg.setString(VENDOR, bid.getVendorName());

 msg.setDouble(PRICE, bid.getPrice());

 return msg;

 } catch (JMSException e) {

 System.out.println("Could not create message: " + e.getMessage());

 return null;

 }

 }

}

The following sequence diagram summarizes the interaction between the classes:

This simple example assumes that Auction IDs are universally unique. This allows us to not
worry about cleaning up the open auction list -- we just let it grow. In a real-life application we
would need to decide when to purge old auction records to avoid memory leaks.

Because this code only references JMS destinations we can run it with wither topics or queues. In
a production environment, this application may be more likely to employ a Point-to-Point Channel
(equivalent to a JMS queue) because there should only be a single recipient for a bid, the
Aggregator. As described in Publish-Subscribe Channel, topics can simplify testing and debugging.
It is very easy to add an additional listener to a topic without affecting the flow of messages.
Many times when I debug a messaging application, I run a separate 'listener' window that tracks
all messages. Many JMS implementations allow you to use wildcards in topic names so that a
listener can simply subscribe to all topics by specifying a topic name of '*'. It is very handy to
have a simple listener tool that displays all messages traveling on a topic and also logs the
messages into a file for later analysis.

Related patterns: Scatter-Gather, Introduction to Composed Messaging Examples, Content-Based
Router, Control Bus, Correlation Identifier, Composed Message Processor, Event-Driven Consumer, Event
Message, Guaranteed Delivery, Message Expiration, Point-to-Point Channel, Publish-Subscribe Channel,
Recipient List, Resequencer, Splitter, Transactional Client

Resequencer

A Message Router can route messages from one channel to different channels based on message
content or other criteria. Because individual messages may follow different routes, some
messages are likely to pass through the processing steps sooner than others, resulting in the
messages getting out of order. However, some subsequent processing steps do require
in-sequence processing of messages, for example to maintain referential integrity.

How can we get a stream of related but out-of-sequence messages back into the correct order?

The obvious solution to the out-of-sequence problem is to keep messages in sequence in the first
place. Keeping things in order is in fact easier than getting them back in order. That's why many
university libraries like to prevent readers from putting books back into the (ordered) bookshelf.
By controlling the insert process, correct order is (almost) guaranteed at any point in time. But
keeping things in sequence when dealing with an asynchronous messaging solution can be about
as difficult as convincing a teenager that keeping their room in order is actually the more efficient
approach.

One common way things get out of sequence is the fact that different messages may take
different processing paths. Let's look at a simple example. Let's assume we are dealing with a
numbered sequence of messages. If all even numbered messages have to undergo a special
transformation whereas all odd numbered messages can be passed right through, then odd
numbered messages will appear on the resulting channel while the even ones queue up at the
transformation. If the transformation is quite slow, all odd messages may appear on the output
channel before a single even message makes it, bringing the sequence completely out of order
(see picture).

To avoid getting the messages out of order, we could introduce a loop-back (acknowledgment)
mechanism that makes sure that only one message at a time passes through the system. The next
message will not be sent until the last one is done processing. This conservative approach will
resolve the issue, but has two significant drawbacks. First, it can slow the system significantly. If
we have a large number of parallel processing units, we would severely underutilize the
processing power. In many instances, the reason for parallel processing is that we need to
increase performance, so throttling traffic to one message at a time would complete erase the
purpose of the solution. The second issue is that this approach requires us to have control over
messages being sent into the processing units. However, often we find ourselves at the receiving
end of an out-of-sequence message stream without having control over the message origin.

An Aggregator can receive a stream of messages, identify related messages and aggregate them
into a single message based on a number of strategies. During this process, the Aggregator also
needs to be able to deal with the fact that individual messages can arrive at any time and in any
order. The Aggregator solves this problem by storing messages until all related messages arrive
before it publishes a result message.

Use a stateful filter, a Resequencer, to collect and re-order messages so that they can be
published to the output channel in a specified order.

The Resequencer can receive a stream of messages that may not arrive in order. The Resequencer
contains in internal buffer to store out-of-sequence messages until a complete sequence is
obtained. The in-sequence messages are then published to the output channel. It is important that
the output channel is order-preserving so messages are guaranteed to arrive in order at the next
component. Like most other routers, a Resequencer usually does not modify the message contents.

Sequence Numbers

For the Resequencer to function, each message has to have a unique Sequence Number (see
Message Sequence). This sequence number is different from a Message Identifier or Correlation
Identifier. A Message Identifier is a special attribute that uniquely identifies each message.
However, in most cases Message Identifiers are not comparable, they are basically random values
and often times not even numeric. Even if they happen to numerical values it is generally a bad
idea to overload the Sequence Number semantics over an existing Message Identifier element.
Correlation Identifiers are designed to match incoming messages to original outbound requests.
The only requirement for Correlation Identifiers is uniqueness, they do not to have to be numeric
or in sequence. So if we need to preserve the order of a series of messages we should define a
separate field to track the Sequence Number. Typically, this field can be part of the Message
Header.

Generating Sequence Numbers can be more time-consuming than generating unique identifiers.
Often times unique identifiers can be generated in a distributed fashion by combining unique
location information (e.g., the MAC address of the network interface card) and current time. Most
GUID (Globally Unique Identifier) algorithms work this way. To generate in-sequence numbers
we generally need a single counter that assigns numbers across the system. In most cases, it is not
sufficient for the numbers to be simply in ascending order, but they need to be consecutive as
well. Otherwise it will be difficult to identify missing messages. If we are not careful, this
Sequence Number generator could easily become a bottleneck for the message flow. If the
individual messages are the result of using a Splitter it is best to incorporate the numbering right
into the Splitter. The Identify Field pattern in [EAA] contains a useful discussion on how to
generate keys and sequence numbers.

Internal Operation

Sequence Numbers ensure that the Resequencer can detect messages arriving out of sequence. But
what should the Resequencer do when a out-of-sequence message arrives? An out-of-sequence

message implies that a message with a higher sequence number arrives before a message with a
lower sequence number. The Resequencer has to store the message with the higher sequence
number until it receives all the "missing" messages with lower sequence numbers. Meanwhile, it
may receive other out-of-sequence messages as well, which have to be stored as well. Once the
buffer contains a consecutive sequence of messages, the Resequencer sends this sequence to the
output channel and then removes the sent messages from the buffer (see picture).

In this simple example, the Resequencer receives messages with the sequence numbers 1, 3 ,5 ,2.
We assume that the sequence starts with 1, so the first message can be sent right away and
removed from the buffer. The next message has the sequence number 3, so we are missing
message 2. Therefore, we store message 3 until we have a proper sequence of messages. We do
the same with the next message, which has a sequence number of 5. Once message 2 comes in,
the buffer contains a proper sequence of the messages 2 and 3. Therefore, the Resequencer
publishes these messages and removes them from the buffer. Message 5 remains in the buffer
until the remaining "gap" in the sequence is closed.

Avoiding Buffer Overrun

How big should the buffer be? If we are dealing with a long stream of messages the buffer can get
rather large. Worse yet, let's assume we have a configuration with multiple processing units each
of which deals with a specific message type. If one processing unit fails, we will get a long stream
of out-of-sequence messages. A buffer-overrun is almost certain. In some cases we can use the
message queue to absorb the pending messages. This works only if the messaging infrastructure
allows us to read messages from the queue based on selection criteria as opposed to always
reading the oldest message first. That way we can poll the queue and see whether the first
'missing' message has come in yet without consuming all the messages in between. At some point,
though, even the storage allocated to the message queue will fill up.

One robust way to avoid buffer overruns is to throttle the message producer by using active
acknowledgement (see picture).

As we discussed above, sending only a single message at a time is very inefficient. So we need to
be a little smarter than that. One way we can be more efficient is for the Resequencer to tell the
producer how many slots it has available in its buffer. The message throttle can then fire off that
many messages since even if they get completely out of order the Resequencer will be able to hold
all of them in the buffer and re-sequence them. This approach presents a good compromise
between efficiency and buffer requirements. However, it does require that we have access to the
original in-sequence message stream in order to insert the send buffer and throttle.

This approach is very similar to the way the TCP/IP network protocol works. One of the key
features of the TCP protocol is to ensure in-sequence delivery of packets over the network. In
reality, each packet may be routed through a different network path so that out-of-sequence
packets occur quite frequently. The receiver maintains a circular buffer that is used as a sliding
window. Receiver and sender negotiate on the number of packets to send before each
acknowledgement. Because the sender waits for an acknowledgment from the receiver, a fast
sender cannot outpace the receiver or cause the buffer to overflow. Specific rules also prevent the
so-called Silly Window Syndrome where sender and receiver could fall into a very inefficient
one-packet-at-a-time mode.

Another solution to the buffer overrun problem is to compute stand-in messages for the missing
message. This works if the recipient is tolerant towards "good enough" message data and does
not require precise data for each message or if speed is more important than accuracy. For
example, in voice over IP transmissions implement filling in a blank packet results in a better
user experience than issuing a re-request for a lost packet.

Most of us application developers take reliable network communication for granted. When
designing messaging solutions, it is actually helpful to look into some of the internals of TCP
because at its core, IP traffic is asynchronous and unreliable and has to deal with many of the
same issues enterprise integration solutions do. For a thorough treatment of IP protocols see
[Stevens] and [Wright].

Example: Resequencer in Microsoft .NET with MSMQ

To demonstrate the function of a Resequencer in a real-life scenario, we use the following setup:

Resequencer Test Configuration

The test setup consists of four main components, each implemented as a C# class. The
components communicate via MSMQ message queues, provided by the Message queuing service
that is part of Windows 2000 and Windows XP.

• MQSend acts as the Test Message generator. The message body contains a simple text
string. MQSend equips each message with a sequence number inside the AppSpecific
property of each message. The sequence starts with 1 and the number of messages can be
passed in from the command line. MQSend publishes the messages to the private queue
inQueue.

• DelayProcessor reads messages off the inQueue. The only 'processing' consists of a timed
delay before the identical message is republished to the outQueue. We use three
DelayProcessors in parallel to simulate a load balanced processing unit. The processors act as
Competing Consumers, so that each message is consumed by exactly one processor. All
processors publish messages to the outQueue. Because of the different processing speed,
messages on the outQueue are out of sequence.

• The Resequencer buffers incoming out-of-sequence messages and republishes them in
sequence to the sequenceQueue.

• MQSequenceReceive reads messages off the sequenceQueue and verifies that the
sequence numbers in the AppSpecific property are in ascending order.

If we fire up all components, we see debug output similar to the following picture. From the size
of the processor output windows we can see the different speeds at which the processors are
working. As expected, the messages arriving at the Resequencer are not in sequence (in this run,
the messages arrived as 3, 4, 1, 5, 7, 2 ...). We can see from the Resequencer output how the
Resequencer buffers the incoming messages if a message is missing. As soon as the missing
message arrives, the Resequencer publishes the now completed sequence.

Output from the test components

Looking at the test setup, we realize that both the DelayProcessor and the Resequencer have a
few things in common: they both read messages from an input queue and publish them to an
output queue. The only difference is in what happens in between -- the actual processing of the
message. Therefore, we created a common base class that encapsulates the basic functionality of
this generic Filter (see Pipes and Filters. It contains convenience and template methods for queue
creation and asynchronous receiving, processing and sending of messages. We call this base class
Processor (see picture).

Both the DelayProcessor and the Resequencer inherit from the common Processor class

The default implementation of the Processor simply copies messages from the input queue to the
output queue. To implement the Resequencer, we have to override the default implementation of
the ProcessMessage method. In the case of the Resequencer, the processMessage method adds the
received message in the buffer, which is implemented as a Hashtable. The messages in the buffer
are keyed by the message sequence number which is stored in the AppSpecific property. Once
the new message is added, the method SendConsecutiveMessages checks whether we have a
consecutive sequence starting with the next outstanding messages. If so, the method sends all
consecutive messages and removes them from the buffer.

Resequencer.cs

using System;

using System.Messaging;

using System.Collections;

using MsgProcessor;

namespace Resequencer

{

 class Resequencer : Processor

 {

 private int startIndex = 1;

 private IDictionary buffer = (IDictionary)(new Hashtable());

 private int endIndex = -1;

 public Resequencer(MessageQueue inputQueue, MessageQueue outputQueue) : base

(inputQueue, outputQueue) {}

 protected override void ProcessMessage(Message m)

 {

 AddToBuffer(m);

 SendConsecutiveMessages();

 }

 private void AddToBuffer(Message m)

 {

 Int32 msgIndex = m.AppSpecific;

 Console.WriteLine("Received message index {0}", msgIndex);

 if (msgIndex < startIndex)

 {

 Console.WriteLine("Out of range message index! Current start is: {0}",

startIndex);

 }

 else

 {

 buffer.Add(msgIndex, m);

 if (msgIndex > endIndex)

 endIndex = msgIndex;

 }

 Console.WriteLine(" Buffer range: {0} - {1}", startIndex, endIndex);

 }

 private void SendConsecutiveMessages()

 {

 while (buffer.Contains(startIndex))

 {

 Message m = (Message)(buffer[startIndex]);

 Console.WriteLine("Sending message with index {0}", startIndex);

 outputQueue.Send(m);

 buffer.Remove(startIndex);

 startIndex++;

 }

 }

 }

}

As you can see, the Resequencer assumes that the message sequence starts with 1. This works well
if the message producer also starts the sequence from 1 and the two components maintain the
same sequence over the lifetime of the components. To make the Resequencer more flexible, the
message producer should negotiate a sequence start number with the Resequencer first before
sending the first message of the sequence. This process is analogous to the SYN messages
exchanged during the connect sequence of the TCP protocol (see [Stevens]).

The current implementation also has no provisions for a buffer overrun. Let's assume, a
DelayProcessor aborts or malfunctions and 'eats' a message. The Resequencer will wait indefinitely
for the missed message until the buffer overflows. In hi-volume scenarios the message and the
Resequencer need to negotiate a window size describing the maximum number of messages the
Resequencer can buffer. Once the buffer is full, an error handler has to determine how to deal with
the missing message. For example, the producer could resend the message or a 'dummy' message
could be injected.

The Processor is relatively simple. It uses asynchronous message processing by using the
BeginReceive and EndReceivemethods. Because it is easy to forget to call BeginReceive at the end
of the message processing, we used a template method that incorporates this step. Subclasses can
the override the ProcessMessage method without having to worry about the asynchronous
processing.

Processor.cs

using System;

using System.Messaging;

using System.Threading;

namespace MsgProcessor

{

 public class Processor

 {

 protected MessageQueue inputQueue;

 protected MessageQueue outputQueue;

 public Processor (MessageQueue inputQueue, MessageQueue outputQueue)

 {

 this.inputQueue = inputQueue;

 this.outputQueue = outputQueue;

 inputQueue.Formatter = new System.Messaging.XmlMessageFormatter(new String[]

{"System.String,mscorlib"});

 inputQueue.MessageReadPropertyFilter.ClearAll();

 inputQueue.MessageReadPropertyFilter.AppSpecific = true;

 inputQueue.MessageReadPropertyFilter.Body = true;

 inputQueue.MessageReadPropertyFilter.CorrelationId = true;

 inputQueue.MessageReadPropertyFilter.Id = true;

 Console.WriteLine("Processing messages from " + inputQueue.Path + " to " +

outputQueue.Path);

 }

 public void Process()

 {

 inputQueue.ReceiveCompleted += new

ReceiveCompletedEventHandler(OnReceiveCompleted);

 inputQueue.BeginReceive();

 }

 private void OnReceiveCompleted(Object source, ReceiveCompletedEventArgs

asyncResult)

 {

 MessageQueue mq = (MessageQueue)source;

 Message m = mq.EndReceive(asyncResult.AsyncResult);

 m.Formatter = new System.Messaging.XmlMessageFormatter(new String[]

{"System.String,mscorlib"});

 ProcessMessage(m);

 mq.BeginReceive();

 }

 protected virtual void ProcessMessage(Message m)

 {

 string body = (string)m.Body;

 Console.WriteLine("Received Message: " + body);

 outputQueue.Send(m);

 }

 }

}

Related patterns: Aggregator, Competing Consumers, Message Router, Message Sequence, Pipes and
Filters, Splitter, Test Message

Composed Message Processor

The order-processing example presented in the Content-Based Router and Splitter patterns processes an incoming

order consisting of individual line items. Each line item requires an inventory check with the respective inventory

system. After all items have been verified we want to pass the validated order message to the next processing step.

How you maintain the overall message flow when processing a message consisting of multiple elements, each of

which may require different processing?

This problem seems to contain elements of multiple patterns we have already defined. A Splitter can split a single

message into multiple parts. A Content-Based Router could then route individual sub-messages through the correct

processing steps based on message content or type. The Pipes and Filters architectural style allows us to chain

together these two patterns so that we can route each item in the composed message to the appropriate processing

steps:

In our example, this means that each order item is routed to the proper inventory system to be verified. The inventory

systems are decoupled from each other and each system receives only items that can be processed by it.

The shortcoming of the setup so far is that we cannot find out whether all items that have been ordered are actually in

stock and can be shipped. We also need to retrieve the prices for all items (factoring volume discounts) and assemble

them into a single invoice. This requires us to continue processing as if the order is still a single message even though

we just chopped it up into many sub-messages

One approach would be to just reassemble all those items that are passing through a specific inventory system into a

separate order. This order can be processed as a whole from this point on: the order can be fulfilled and shipped, a bill

can be sent. Each sub-order is treated as an independent process. In some instances, lack of control over the

downstream process may make this approach the only available solution. For example, Amazon follows this approach

for a large portion of the goods it sells. Orders are routed to different fulfillment houses and managed from there.

However, this approach may not provide the best customer experience. The customer may receive more than one

shipment and more than one invoice. Returns or disputes may be difficult to accommodate. This is not a big issue with

consumers ordering books, but may prove difficult if individual order items depend on each other. Let's assume that

the order consists of furniture items that make up a shelving system. The customer would not be pleased to receive a

number of huge boxes containing furniture elements just to find out that the required mounting hardware is

temporarily unavailable and will be shipped at a later time.

The asynchronous nature of a messaging system makes distribution of tasks more complicated than synchronous

method calls. We could dispatch each individual order item and wait for a response to come back before we check the

next item. This would simplify the temporal dependencies, but would make the system very inefficient. We would like

to take advantage of the fact that each system can process orders simultaneously.

Use Composed Message Processor to process a composite message. The Composed Message Processor splits the

message up, routes the sub-messages to the appropriate destinations and re-aggregates the responses back into

a single message.

The Composed Message Processor uses an Aggregator to reconcile the requests that were dispatched to the multiple

inventory systems. Each processing unit sends a response message to the aggregator stating the inventory on hand for

the specified item. The Aggregator collects the individual responses and processes them based on a predefined

algorithm as described under Aggregator.

Because all sub-messages originate from a single message, we can pass additional information, such as the number of

submessages to the Aggregator to define a more efficient aggregation strategy. Nevertheless, the Composed Message

Processor still has to deal with issues around missing or delayed messages. If an inventory system is unavailable, do

we want to delay processing of all orders that include items from that system? Or should we route them to an

exception queue for a human to evaluate manually? If a single response is missing, should we re-send the inventory

request message? For a more detailed discussion of these trade-offs see the Aggregator pattern.

This patterns demonstrates the composability of individual patterns into a larger patterns. We can combine individual

patterns into a larger pattern. To the rest of the system, the Composed Message Processor appears like a simple filter

with a single input channel and a single output channel. As such, it proivdes an effective abstraction of the more

complex internal workings.

The Composite Message Processor as a Single Filter

Related patterns: Aggregator, Content-Based Router, Pipes and Filters, Splitter

Scatter-Gather

In the order processing example introduced in the previous patterns , each order item that is not
currently in stock could be supplied by one of multiple external suppliers. However, the
suppliers may or may not have the respective item in stock themselves, they may charge a
different price and may be able to supply the part by a different date. To fill the order in the best
way possible, we should request quotes from all suppliers and decide which one provides us
with the best term for the requested item.

How do you maintain the overall message flow when a message needs to be sent to multiple
recipients, each of which may send a reply?

The solution should allow for flexibility in determining the recipients of the message. We can
either determine the list of approved suppliers centrally or we can let any interested supplier
participate in the 'bid'. Since we have no (or little) control over the recipients, we must be
prepared to receive responses from some, but not all recipients. Such changes to the bidding rules
should not impact the structural integrity of the solution.

The solution should hide the number and identity of the individual recipients from any
subsequent processing. Encapsulating the distribution of the message locally keeps other
components independent from the route of the individual messages.

We also need to coordinate the subsequent message flow. The easiest solution might be for each
recipient to post the reply to a channel and let subsequent components deal with the resolution of
the individual messages. However, this would require subsequent components to be aware of the
message being sent to multiple recipients. It might also be harder for subsequent components to
process the individual messages without having any knowledge over the routing logic that has
been applied.

It makes sense to combine the routing logic, the recipients and the post-processing of the
individual messages into one logical component.

Use a Scatter-Gather that broadcasts a message to multiple recipients and re-aggregates the
responses back into a single message.

The Scatter-Gather routes a request message to the a number of recipients. It then uses an
Aggregator to collect the responses and distill them into a single response message.

There are two variants of the Scatter-Gather that use different mechanisms to send the request
messages to the intended recipients:

• Distribution via a Recipient List allows the Scatter-Gather to control the list of recipients
but requires the Scatter-Gather to be aware of each recipient's message channel.

• Auction-style Scatter-Gathers use a Publish-Subscribe Channel to broadcast the request to
any interested participant. This option allows the Scatter-Gather to use a single channel but at
the same time relinquishes control.

The solution shares similarities with the Composed Message Processor. Instead of using a Splitter,
we broadcast the complete message to all involved parties using a Publish-Subscribe Channel. We
will most likely add a Return Address so that all responses can be processed through a single
channel. As with the Composed Message Processor, responses are aggregated based on defined
business rules. In our example, the Aggregator might take the best bids from suppliers that can fill
the order. Aggregating the responses can be more difficult with a Scatter-Gather as compared to
the Composed Message Processor because we may not know how many recipients participate in the
interaction.

Both the Scatter-Gather and the Composed Message Processor route a single message to multiple
recipients and combine the individual reply messages back into a single message by using an
Composed Message Processor. The Composed Message Processorperforms the task of synchronizing
multiple parallel activities. If the individual activities take widely varying amounts of time this
results in subsequent processing being held up even though many subtasks (or even all but one)
have been completed. This consideration needs to be weighed against the simplicity and

encapsulation the Scatter-Gather brings. A compromise between the two choices may be a
cascading Aggregator. This design allows subsequent tasks to be initiated with only a subset of the
results being available.

Example: Loan Broker

The Loan Broker example (see Introduction to Composed Messaging Examples) uses a Scatter-Gather
to route requests for a loan quote to a number of banks and select the best offer from the
incoming responses. The example implementations demonstrate both a solution based on a
Recipient List (see Asynchronous Implementation with MSMQ and a Publish-Subscribe Channel (see
Asynchronous Implementation with TIBCO ActiveEnterprise).

Example: Combining Patterns

We can now use the Scatter-Gather to implement the widget and gadget order processing example.
We can combine the Scatter-Gather with the Composed Message Processor to process each incoming
order, sequence it into individual items, then pass each item up for a bid, then aggregate the bids
for each item into a combined bid response, and lastly aggregate all bid responses into a complete
quote. This is a very real example how multiple integration patterns can be combined into a
complete solution. The composition of individual patterns into larger patterns allows us to
discuss the solution at a higher level of abstraction. It also allows us to modify details of the
implementation without affecting other components.

Combining a Scatter-Gather and a Composite Message Processor

This example also shows the versatility of the Aggregator. The solution uses two Aggregators for
quite different purposes. The first Aggregator (part of the Scatter-Gather) chooses the best bid from
a number of vendors. This aggregator may not require a response from all vendors (speed may

be more important than a low price) but may require a complex algorithm to combine responses.
For example, the order may contain 100 widgets and the lowest price supplier has only 60
widgets in stock. The Aggregator needs to be able to decide whether to accept this offer and fill the
remaining 40 items from another supplier. The second Aggregator (part of the Composed Message
Processor) might be simpler because it simply concatenates all responses received from the first
Aggregator. However, this Aggregator needs to make sure that all responses are in fact received
and needs to deal with error conditions such as missing item responses.

Related patterns: Aggregator, Introduction to Composed Messaging Examples, Asynchronous
Implementation with MSMQ, Asynchronous Implementation with TIBCO ActiveEnterprise, Composed
Message Processor, Publish-Subscribe Channel, Recipient List, Return Address, Splitter

Routing Slip

Most of the routing patterns presented in this section route incoming messages to one or more
destinations based on a set of rules. Sometimes, though, we need to route a message not just to a
single component, but through a whole series of components. Let's assume, for example, that we
use a Pipes and Filters architecture to process incoming messages that have to undergo a sequence
of processing steps and business rule validations. Since the nature of the validations varies
widely and may depend on external systems (e.g., credit card validations), we implement each
type of step as a separate filter. Each filter inspects the incoming message, and applies the
business rule(s) to the message. If the message does not fulfill the conditions specified by the
rules it is routed to an exception channel. The channels between the filters determine the
sequence of validations that the message needs to undergo.

Now let's assume, though, that the set of validations to perform against each message depends
on the message type (for example, purchase order request do not need credit card validation or
customers who send orders over a VPN may not require decryption and authentication). To
accommodate this requirement we need to find a configuration that can route the message
through a different sequence of filters depending on the type of the message.

How do we route a message consecutively through a series of processing steps when the
sequence of steps is not known at design-time and may vary for each message?

The Pipes and Filters architectural style give us an elegant approach to represent a sequence of
processing steps as independent filters, connected by pipes (channels). In its default
configuration, the filters are connected by fixed pipes. If we want to allow message to be routed
to different filters dynamically, we can use special filters that act as Message Routers. The routers
dynamically determine the next filter to route the message to.

The key requirements to a good solution to our problem can be summarized as follows:

• Efficient message flow - Messages should only flow through the required steps and
avoid unnecessary components.

• Efficient use of resources - The solution should not use a huge amount of channels,
routers and other resources.

• Flexible - The route that individual messages that should be easy to change.
• Simple to maintain - If a new type of message needs to be supported, we would like to

have a single point of maintenance to avoid introducing errors.

The following diagram illustrates our alternative solutions to the problem. We are assuming that
the system offers three separate processing steps A, B, and C and that the current message is
required to pass only through steps A and C. The actual flow for this example message is marked
with thick, red arrows.

We could form one long Pipes and Filters chain of all possible validation steps and add code to
each router to bypass the validation if the step is not required for the type of message being
passed through (see Option A). This option employs the reactive filtering approach described in
the Message Filter. While the simplicity of this solution is appealing, the fact that the components
blend both business logic (the validation) and routing logic (deciding whether to validate) will
make them harder to reuse. Also, it is conceivable that two types of messages undergo similar
processing steps but in different order. This hard-wired approach would not easily support this
requirement.

In order to improve separation of concerns and increase the composability of the solution we
should replace the 'gating' logic inside each component with Content-Based Routers. We would
then arrive at a chain of all possible validation steps, each prefixed by a Content-Based Router (see
Option B). When a message arrives at the router, it checks the type of the message and
determines whether this type of message requires the validation step at hand. If the step is
required, the router routes the message through the validation. If the step is not required, the
router bypasses the validation and routes the message directly to the next router. This
configuration works quite well in cases where each step is independent from any other step and
the routing decision can be made locally at each step. On the downside, this approach ends up
routing the message though a long series of routers even though only a few validation steps may
be executed. In fact, each message will be transmitted across a channel at a rate of 2 times the
number of possible components. If we have a large component library, this will cause an
enormous amount of message flow for a rather simple function. Also, the routing logic is
distributed across many filters, making it hard to understand which validation steps a message of
a specific type will actually undergo. Likewise, if we introduce a new message type we may have
to update each and every router. Lastly, this option suffers from the same limitation as Option A
in that messages are tied to executing steps in a common order.

If we desire a central point of control, an up-front Content-Based Router tended to be a good choice
in our prior pattern discussions. We could envision a solution where we setup individual Pipes
and Filters chains for each message type. The chain would contain the sequence of validations
relevant to the specific type. We would then use a Content-Based Router to route the incoming
message to the correct validation chain based on message type (see Option C). This approach
routes messages only through the relevant steps (plus the initial router). Thus, is is the most
efficient approach so far because we only add a single routing step in order to implement the
desired functionality. The solution also highlights the path that a message of a specific type will
take quite nicely. However, it requires us to hard-wire any possible combination of validation
rules. Also, the same component may be used in more than one path. This approach would
require us to run multiple instances of such components which leads to unnecessary duplication.
For a large set of message types, this approach could result in a maintenance nightmare because
of the large number of component instances and associated channels that we have to maintain. In
summary, this solution is very efficient at the expense of maintainability.

If we want to avoid hard-wiring all possible combinations of validation steps, we need to insert a
Content-Based Router between each validation step (see Option D). In order not to run into the
same issues associated with the reactive filtering approach (presented in Option B), we would
insert the Content-Based Router after each step instead of before (we need one additional router in
front of the very first step to get started). The routers would be smart enough to relay the
message directly to the next required validation step instead of routing it blindly to the next
available step in the chain. In the abstract, this solution looks similar to the reactive filtering
approach because the message traverses an alternating set of routers and filters. However, in this
case the routers possess more intelligence than a simple yes/no decision which allows us to
eliminate unnecessary steps. For example, in our simple scenario, the message passes only
through 2 routers as opposed to 3 with Option B. This option provides efficiency and flexibility,
but does not solve our goal of obtaining central goal-- we still have to maintain a potentially large
number of routers because the routing logic is spread out across a series of independent routers .

To address this last shortcoming we could combine all routers into a single 'super-router' (See
Option E). After each validation step, the message would be routed back to the super-router who

would determine the next validation step to be executed. Since all the routing decisions are now
incorporated into a single router, we need to devise a mechanism to remember which steps we
already finished processing. Therefore, the super-router would have to be stateful or each filter
would have to attach a tag to the message telling the super-router the name of the last filter the
message went through. Also, we are still dealing with the fact that each validation step requires
the message to be passed through two channels: to the component and the back to the
super-router. This results in about two times as much traffic as Option C.

Attach a Routing Slip to each message, specifying the sequence of processing steps. Wrap each
component with a special message router that reads the Routing Slip and routes the message to
the next component in the list.

We insert a special component into the beginning of the process that computes the list of required
steps for each message. It then attaches the list as a Routing Slip to the message and starts the
process by routing the message to the first processing step. After successful processing, each
processing step looks at the Routing Slip and passes the message to the next processing step
specified in the routing table.

This pattern works very similar to the routing slip attached to a magazine for circulation in a
department. The only difference is that the Routing Slip has a defined sequence of components it
traverses whereas in most companies you can hand the magazine after reading it to any person
on the list who has not read it (of course, the boss usually comes first).

The Routing Slip combines the central control of the 'super-router' approach (Option E) with the
efficiency of the hard-wired solutions (Option C). We determine the complete routing scheme
up-front and attach it to the message so we do not have to return to the central router for further
decision making. Each component is augmented by simple routing logic. In the proposed
solution we assume that this routing logic is built into the processing component itself. If we look
back at Option A, we remember that we dismissed this approach partway because we had to
hard-code some logic into each component. How is the Routing Slip better? The key difference is
that the router used in the Routing Slip is generic and does not have to change with changes in the
routing logic. The routing logic incorporated into each component is similar to a Return Address
where the return address is selected from a list of addresses. Similar to the Return Address, the
components retain their reusability and composability even though a piece of routing logic is

built into the component. Additionally, the computation of the routing table can now be done in
a central place without ever touching the code inside any of the processing components.

As always, there is no free lunch. So we can expect the Routing Slip to have some limitations. First,
the message size increases slightly. In most cases this should be insignificant, but we need to
realize that we are now carrying process state (which steps have been completed) inside the
message. This can cause other side effects. For example, if we lose a message we lose not only the
message data but also the process data (i.e., where the message was going to go next). In many
cases it may be useful to maintain the state of all messages in a central place to perform reporting
or error recovery.

Another limitation of the Routing Slip is the fact that the path of a message cannot be changed
once it is under way. This implies that the message path cannot depend on intermediate results
generated by a processing step along the way. In many real-life business processes the message
flow does change based on intermediate results, though. For example, depending on the
availability of the ordered items (as reported by the inventory system) we may want to continue
with a different path. This also means that a central entity has to be able to determine all steps a
message should undergo in advance. This can lead to some brittleness in the design, similar to
the concerns about using a Content-Based Router.

Implementing a Routing Slip with Legacy Applications

The Routing Slip assumes that we have the ability to augment the individual components with the
router logic. If we are dealing with legacy applications or packaged applications we may not be
able to influence the functionality of the component itself. Rather, we need to use an external
router that communicates with the component via messaging. This inevitably increases the
number of channels and components in usage. However, the Routing Slip still provides the best
trade-off between our goals of efficiency, flexibility and maintainability.

Implementing a Routing Slip with Legacy Applications

Common Usage

The Routing Slip is most useful in the following scenarios:

• A sequence of binary validation steps. By not adding information to the message, the
limitation that we cannot change the routing once the message is underway is no longer a
factor. We still appreciate the flexibility to change the sequence of validation steps by
reconfiguring the central Routing Slip. Each component has the choice between aborting
the sequence due to error or to pass the message on to the next step.

• Each step is a stateless transformation. For example, let's assume that we receive orders
from a variety of business partners. All orders arrive on a common channel. Depending
in the partner, the message may require different transformation steps. Messages from
some partners may require decryption, others may not. Some may require transformation
or enrichment while others may not. Keeping a Routing Slip for each partner gives us an
easy way to reconfigure the steps for each partner in a central location.

• Each step gathers data, but makes no decisions. In some cases, we receive a message that
contains reference identifiers to other data. For example, if we receive an order for a DSL
line, the message may contain only the home phone number of the applicant. We need to
go to external sources to determine the customer's name, the central office servicing the
line, the distance from the central office etc. Once we have a complete message with all
relevant data we can decide what package to offer to the customer. In this scenario the
decision is postponed until the end so we can use a Routing Slip. In this scenario we need
to assess though whether we really require the flexibility of the Routing Slip. Otherwise a
simple hard-wired chain of Pipes and Filters may be sufficient.

Implementing a Simple Router with a Routing Slip

One of the downsides of a Content-Based Router was that it has to incorporate knowledge about
each possible recipient and the routing rules associated with that recipient. Under the spirit of
loose coupling it may be undesirable to have a central component that incorporates knowledge
about many other components. An alternative solution to the Content-Based Router was a
Publish-Subscribe Channel combined with an array of Message Filters. This solution allows each
recipient to decide which messages to process but suffered from risk of duplicate message
processing. Another option to enable individual recipients to decide whether to process a given
message is to use a modified version of a Routing Slip acting as a Chain of Responsibility as
described in [GoF]. The Chain of Responsibility allows each component to accept a message or
route it to the next component in the list. The Routing Slip is a static list of all participants. This
still implies that a central component has to have knowledge of all possible recipients. However,
the component does not need to know which messages each component consumes.

Using a Routing Slip avoids the risk of duplicate message processing. Likewise it is easy to
determine if a message was not processed by any component. The main trade-off is the slower
processing and increased network traffic. While a Content-Based Router publishes a single
message regardless of the number of systems, the Routing Slip approach publishes an average
number of messages equal to 1/2 the number of systems. We can reduce this number if we can
arrange the systems in such a way that the first systems to receive the message have a higher
chance of handling the message, but the number of messages will likely remain higher than with
a predictive Content-Based Router.

There are cases where we need more control than a simple sequential list or we need to change
the flow of a message based on intermediate results. The Process Manager can fulfill these
requirements because it supports branching conditions, forks and joins. In essence, the Routing
Slip is a special case of a dynamically configured business process. The trade-offs between using a
Routing Slip and using a central Process Manager should be carefully examined. A dynamic
Routing Slip combines the benefits of a central point of maintenance with the efficiency of a
hard-wired solution. However, as the complexity grows, analyzing and debugging the system
may become increasingly difficult as the routing state information is distributed across the
messages. Also, as the semantics of the process definition begin to include constructs such as
decisions, forks and joins, the configuration file may become hard to understand and maintain.
We could include conditional statements inside the routing table and augment the routing
modules in each component to interpret the conditional commands to determine the next routing
location. We need to be careful, though, to not overburden the simplicity of this solution with
additional functionality. Once we require this type of complexity it may be a good idea to give up
the run-time efficiency of a Routing Slip and to start using a much more powerful Process Manager.

Example: Routing Slip as a Composed Service

When creating a service-oriented architecture, a single logic function is often composed of
multiple independent steps. This situation occurs commonly for two primary reasons. First,
packaged applications tend to expose fine-grained interfaces based on their internal APIs. When
integrating these packages into an integration solution, we want to work at a higher level of
abstraction. For example, the operation "New Account" may require multiple steps inside a
billing system: create a new customer, select a service plan, set address properties, verify credit
data etc. Second, a single logical function may be spread across more than one system. We want

to hide this fact from other systems so we have the flexibility to reassign responsibilities between
systems without affecting the the rest of the integration solution. We can easily use a Routing Slip
to execute multiple internal steps for a single request message. The Routing Slip gives us the
flexibility to execute different requests from the same channel. The Routing Slip executes the
sequence of individual steps but appears to the outside like a single step (see picture).

1. The incoming request message, specifying the intended operation and any necessary data,
is sent to the lookup component.

2. The lookup component retrieves the list of required processing steps associated with the
intended operation from a service directory. It adds the list of channels (each channel
equals one fine-grained operation) to the message header. The lookup component adds
the return channel to the list so that completed messages are returned to the lookup
component.

3. The lookup component publishes the message to the channel for the first activity.
4. Each router reads the request from the queue and passes it to the service provider. After

the execution, the router marks the activity as completed and routes the message to the
next channel specified in the routing table.

5. The lookup component consumes the message off the return channel and forwards it to
the requestor. To the outside, this whole process appears like a simple request-reply
message exchange.

Example: WS-Routing

Frequently, a Web service request has to be routed through multiple intermediaries. For this
purpose, Microsoft defined the Web Services Routing Protocol (WS-Routing) specification.
WS-Routing is a SOAP-based protocol for routing messages from a sender through a series of
intermediaries to a receiver. The semantics of WS-Routing are richer than those of the Routing Slip,
but a Routing Slip can be easily implemented in WS-Routing. The following example shows the
SOAP header for a message that is routed from node A to node D via the intermediaries B and C.

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://www.w3.org/2001/06/soap-envelope">

 <SOAP-ENV:Header>

 <wsrp:path xmlns:wsrp="http://schemas.xmlsoap.org/rp/">

 <wsrp:action>http://www.im.org/chat</wsrp:action>

 <wsrp:to>soap://D.com/some/endpoint</wsrp:to>

 <wsrp:fwd>

 <wsrp:via>soap://B.com</wsrp:via>

 <wsrp:via>soap://C.com</wsrp:via>

 </wsrp:fwd>

 <wsrp:from>soap://A.com/some/endpoint</wsrp:from>

 <wsrp:id>uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d6</wsrp:id>

 </wsrp:path>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 ...

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Like most services specs, WS-Routing is likely to evolve over time and/or be merged with other
specs. We included the example here as a snapshot of where the Web Services community is
going with respect to routing.

Related patterns: Content-Based Router, Message Filter, Message Router, Pipes and Filters, Process
Manager, Publish-Subscribe Channel, Return Address

Process Manager

The Routing Slip demonstrates how a message can be routed through a dynamic series of
processing steps. The solution of the Routing Slip is based on two key assumptions: the sequence
of processing steps has to be determined up-front and the sequence is linear. In many cases, these
assumptions may not be fulfilled. For example, routing decisions might have to be made based
on intermediate results. Or, the processing steps may not be sequential, but multiple steps might
be executed in parallel.

How do we route a message through multiple processing steps when the required steps may
not be known at design-time and may not be sequential?

One of the primary advantages of a Pipes and Filters architectural style is the composability of
individual processing units ("filters") into a sequence by connecting them with channels ("pipes").
Each message is then routed through the sequence of processing units (or components). If we
need to be able to change the sequence for each message, we can use multiple Content-Based
Routers. This solution provides the maximum flexibility, but has the disadvantage that the
routing logic is spread across many routing components. The Routing Slip provides a central

point of control by computing the message path up-front, but does not provide the flexibility to
re-route the message based on intermediate results or to execute multiple steps simultaneously.

We can gain flexibility and maintain a central point of control, if after each individual processing
unit we return control back to a central component. That component can then determine the next
processing unit(s) to be executed. Following this approach, we end up with an alternating
process flow: central component, processing unit, central component, processing unit and so on.
As a result, the central unit receives a message after each individual processing step. When the
message arrives, the central component has to determine the next processing step(s) to be
executed based on intermediate results and the current 'step' in the sequence. This would require
the individual processing units to return sufficient information to the central unit to make this
decision. However, this approach would make the processing units dependent on the existence of
the central unit because they might have to pass through extraneous information that is not
relevant to the processing unit, but only to the central component. If we want to decouple the
individual processing steps and the message formats from the central unit, we need to provide
the central unit with some form of 'memory' that tells it what step in the sequence was executed
last.

Use a central processing unit, a Process Manager, to maintain the state of the sequence and
determine the next processing step based on intermediate results.

First of all, let me clarify that the design and configuration of a Process Manager is a pretty
extensive topic. We could probably fill a whole book (Volume 2, maybe?) with patterns related to
the design of workflow or business process management. Therefore, this pattern is intended
primarily to "round off" the topic of routing patterns and to provide a pointer into the direction of
workflow and process modeling. By no means is it a comprehensive treatment of business
process design.

Using a Process Manager results in a so-called hub-and-spoke pattern of message flow (see
diagram). An incoming message initializes the Process Manager. We call this message the trigger
message. Based on the rules inside the Process Manager, it sends a message (1) to the first
processing step, implemented by Processing Unit A. After unit A completes its task it sends a
reply message back to the Process Manager. Next, the Process Manager determines the next step to
be executed and sends message (2) to the next processing unit. As a result, all message traffic
runs through this central 'hub', hence the term hub-and-spoke. The downside of this central
control element is the danger of turning the Process Manager into a performance bottleneck.

The versatility of a Process Manager is at the same time its biggest strength and weakness. A
Process Manager can execute any sequence of steps, sequential or in parallel. Therefore, almost
any integration problem can be solved with a Process Manager. Likewise, most of the patterns
introduced in this chapter could be implemented using a Process Manager. In fact, many EAI
vendors make you believe that every integration problem is a process problem. We think that
using a Process Manager for every situation may be overkill. It can distract from the core design
issue and also cause significant performance overhead.

Managing State

One of the key functions of the Process Manager is to maintain state between messages. For
example, when the second processing unit returns a message to the Process Manager, the Process
Manager needs to remember that this is step 2 out of a sequence of many steps. We do not want to
tie this knowledge to the processing unit because the same unit may appear multiple times inside
the same process. For example, Processing Unit B may be step 2 and step 4 of a single process. As
a result, the same reply message sent by Processing Unit B may trigger the Process Manager to
execute step 3 or step 5, based on the process context. To accomplish this without complicating
the processing unit, the Process Manager needs to maintain the current position in the process
execution.

It is useful for the Process Manager to be able to store additional information besides the current
position in the process. The Process Manager can store intermediate results from previous
processing if it is relevant to later steps. For example, if the results of step 1 are relevant to a later
step, the Process Manager can store this information without burdening the messages to and from
subsequent processing units with this data back. This allows the individual processing steps to be
independent of each other because they do not have to worry about data produced or consumed
by other units. Effectively, the Process Manager plays the role of a Claim Check explained later.

Process Instances

Because the process execution can span many steps and can therefore take a long time, the Process
Manager needs to be prepared to receive new messages while another process is still executing. In
order to manage multiple parallel executions, the Process Manager creates a new process instance
for each incoming trigger message. The process instance stores the state associated with the
execution of the process triggered by the trigger message. The state includes the current
execution step of the process and any associated data. Each process instance is identified by a
unique process identifier.

It is important to separate the concepts of a process definition (also referred to as process template)
and a process instance. The process definition is a design construct that defines the sequence of
steps to be executed. The process instance is an active execution of a specific template. The
diagram below shows a simple example with one process definition and two process instances.

The first instance (process identifier 1234) is currently executing step 1 while the second process
instance (process identifier 5678) is executing steps 2 and 5 in parallel.

Multiple Process Instances based on one Process Definition

Because multiple process instances may be executing simultaneously, the Process Manager needs
to be able to associate an incoming message with the correct instance. For example, if the Process
Manager in the above example receives a message from a processing unit, which process instance
is the message meant for? Multiple instances may be executing the same step so the Process
Manager cannot derive the instance from the channel or the type of message. The requirement to
associate an incoming message with a process instance reminds us of the Correlation Identifier. The
Correlation Identifier allows a component to associate an incoming reply message with the original
request by storing a unique identifier in the reply message that correlates it to the request
message. Using this identifier the component can match up the reply with the correct request
even if the component has sent multiple requests and the replies arrive out of order. The Process
Manager requires a similar mechanism. When the Process Manager receives a message from a
processing unit, it needs to be able to associate the message with the process instance that sent
the message to the processing unit. The Process Manager needs to include a Correlation Identifier
inside messages that it sends to processing units. The component needs to return this identifier in
the reply message as a Correlation Identifier.

Keeping State in Messages

It is apparent that state management is an important feature of the Process Manager. How, then,
did the previous patterns get away without managing state? In a traditional Pipes and Filters
architecture, the pipes (i.e., the Message Channels) manage the state. To continue the example
above, if we were to implement the process with hard-wired components connected by Message
Channel, it would look like the picture below. If we assume that this system is in the same state as
the example above (i.e. two process instances), it equates to one message with the identifier 1234
sitting in a channel waiting to be processed by component (1) and two messages with the
identifier 5678 waiting to be processed by the components (2) and (5) respectively. As soon as
component (1) consumes the message and completes its processing tasks, it broadcasts a new
message to components (2) and (4) -- exactly the same behavior as the Process Manager in the
above example.

Keeping State in Channels

It is striking how much the message flow notation used for this example resembles an UML
activity diagram that is often used to model the behavior of Process Manager components.
Effectively, we can use an abstract notation to model the behavior of the system during design,
and then decide whether we want to implement the behavior as a distributed pipes-and-filters
architecture or as a hub-and-spoke architecture using a central Process Manager. Even though we
don't have room in this book to dive too deeply into the design of process models, many of the
patterns in this language do apply when designing a process model.

As with most architectural decisions, implementing a central Process Manager or a distributed
pipes-and-filters architecture is not a simple yes/no decision. In many cases, it makes most sense
to use multiple Process Manager components, each of which houses a particular aspect of a larger
process. The Process Manager components can then communicate with each other through a
pipes-and-filters architecture.

Managing state explicitly inside a Process Manager may require a more complex component, but it
allows much more powerful process reporting. For example, most implementations of a Process
Manager provide the ability to query process instance state. This makes it easy to see how many
orders are currently waiting for approval or have been put on hold because of lacking inventory.
We can also tell each customer the status of his or her order. If we used hard-wired channels, we
would have to inspect all channels to obtain the same information. This property of the Process
Manager is not only important for reporting, but also for debugging. Using a central Process
Manager makes it easy to retrieve the current state of a process and the associated data.
Debugging a fully distributed architecture can be a lot more challenging and is almost impossible
without the assistance of such mechanisms as the Message History or Message Store.

Creating the Process Definition

Most commercial EAI implementations include a Process Manager component, combined with
visual tools to model the process definition. Most visual tools use a notation that resembles UML
Activity Diagrams because the semantics of a Process Manager and those of an activity diagram
are fairly similar. Also, activity diagrams are a good visual representation of multiple tasks
executing in parallel. Until recently, most vendor tools converted the visual notation into an
internal, vendor-proprietary process definition to be executed by the process engine. However,
the push to standardize various aspects of distributed systems under the umbrella of Web

services has not ignored the important role of process definitions. Three proposed 'languages'
have emerged as a result of these efforts. Microsoft defined XLANG which is supported by its
family of BizTalk orchestration modeling tools. IBM drafted the WSFL, the Web Services Flow
Language [WSFL]. Recently, both companies have joined forces to create the specification for
BPEL4WS, the Business Process Execution Language for Web Services (see [BPEL4WS]). The
BPEL4WS is a powerful language that describes a process model as an XML document. The
intent is to define a standardized intermediate language between the process modeling tools and
the Process Manager engines. This way, I could model my processes with Vendor X's product and
decide to execute the process on Vendor Y's process engine implementation. For more
information on the impact of Web services standards in integration, see Emerging Standards and
Futures in Enterprise Integration.

The semantics of a process definition can be described in rather simple terms. The basic building
block is an activity (sometimes called task or action). Usually, an activity can send a message to
another component, wait for an incoming message or execute a specific function internally (e.g, a
Message Translator). Activities can be connected in serial fashion or multiple activities can be
executed in parallel using a fork and join construct. A fork allows multiple activities to execute at
the same time. It is semantically equivalent to a Publish-Subscribe Channel in a hard-wired
pipes-and-filters architecture. A join synchronizes multiple parallel threads of execution back into
a single thread. Execution after a join can only continue if all parallel threads have completed
their respective activities. In the pipes-and-filters style an Aggregator often serves this purpose.
The process template also needs to be able to specify a branch, or decision point, so that the path
of execution can change based on the content of a message field. This function is equivalent to a
Content-Based Router. Many modeling tools include the ability to design a loop construct, but this
is really a special case of the branch. The following picture highlights the semantic similarities
between an process definition (depicted as an UML Activity Diagram) and a pipes-and-filters
implementation using the patterns defined in this pattern language, even though the physical
implementation is very different.

Example UML Activity Diagram and Corresponding Pipes-And-Filters Implementation

Comparing the Process Manager against Other Patterns

A number of times we have contrasted a basic Pipes and Filters architecture, the Routing Slip and
the Process Manager. We compiled the key differences into the following table to highlight the
trade-offs involved in choosing the correct architecture.

Distributed Pipes and Filters Routing Slip Central Process Manager

Supports complex message flow Supports only simple, linear flow Supports complex message flow

Difficult to change flow Easy to change flow Easy to change flow

No central point of failure
Potential point of failure (compute

routing table)

Potential point of failure (Process

Manager)

Efficient distributed run-time

architecture
Mostly distributed

Hub-and-spoke architecture may lead to

bottleneck

No central point of administration

and reporting

Central point of administration, but

not reporting

Central point of administration and

reporting

A central point of control and state management can also mean a central point of failure or a
performance bottleneck. For this reason, most Process Manager implementations allow persistent
storage of process instance state in a file or in a database. The implementation can then leverage
redundant data storage mechanisms typically implemented in enterprise-class database systems.
It is also common to run multiple Process Manager in parallel. Parallelizing Process Manager is
generally easy because process instances are independent from each other. This allows us to

distribute process instances across multiple process engines. If the process engine persists all
state information in a shared database, the system can become robust enough to survive the
failure of a process engine -- another engine can simply pick up where the previous one left of.
The downside of this approach is that the state of each process instance has to be persisted in a
central database after each processing step. This could easily turn the database into a new
performance bottleneck. As so often, the architect has to find the correct balance between
between performance, robustness, cost and maintainability.

Example: Loan Broker

The MSMQ implementation of the Loan Broker example at the end of this chapter (see
Asynchronous Implementation with MSMQ) implements a simple Process Manager. This example
creates the Process Manager functionality from scratch, defining a process manager and process
instances. The TIBCO implementation of the same example (see Asynchronous Implementation with
TIBCO ActiveEnterprise) uses a commercial process management tool.

Example: Microsoft BizTalk Orchestration Manager

Most commercial EAI tools include process design and execution capabilities. For example,
Microsoft BizTalk lets users design process definitions via the Orchestration Designer tool that is
integrated into the Visual Studio .NET programming environment.

Microsoft BizTalk 2004 Orchestration Designer

This simple example orchestration receives an order message and executes two parallel activities.
One activity creates a request message to the inventory systems and the other activity creates a
request message to the credit system. Once both responses are received the process continues.
The visual notation makes it easy to follow the process definition.

Related patterns: Aggregator, Asynchronous Implementation with MSMQ, Asynchronous
Implementation with TIBCO ActiveEnterprise, Content-Based Router, Correlation Identifier, Emerging
Standards and Futures in Enterprise Integration, Message Channel, Message History, Message Store,
Message Translator, Pipes and Filters, Publish-Subscribe Channel, Routing Slip, Claim Check

Message Broker

Many patterns in this chapter present ways to route messages to the proper destination without
the originating application being aware of the ultimate destination of the message. Most of the
patterns focused on specific types of routing logic. However, in aggregate, these patterns solve a
bigger problem.

How can you decouple the destination of a message from the sender and maintain central
control over the flow of messages?

Using a simple Message Channel already provides a level of indirection between sender and
receiver -- the sender only knows about the channel, but not the receiver. However, if each
receiver has its own channel, this level of indirection becomes less meaningful. Instead of
knowing the receiver's address, the sender has to know the correct channel name that is
associated with the receiver.

All but the most trivial messaging solutions connect a number of different applications. If we
created individual message channels to connect each application to each other application, the
number of channels in the system would quickly explode into an unmanageable number,
resulting in integration spaghetti (see diagram).

Integration Spaghetti as a Result of Point-to-Point Connections

This diagram illustrates that direct channels between individual applications can lead to an
explosion of the number of channels and reduce many of the benefits of routing messages
through channels in the first place. These types of integration architectures are often a result of a
solution that grew over times. First the customer care system had to talk to the accounting system.
Then the customer care system was also expected to retrieve information from the inventory
system and the shipping system was to update the accounting system with the shipping charges.
It is easy to see how "adding one more piece" can quickly compromise the overall integrity of
solution.

Requiring an application to explicitly communicate with each other application can quickly
hamper the maintainability of the system. For example, if the customer address changes in the
customer care system this system would have to send a message to all systems that maintain
copies of the customer address. Every time a new system is added, the customer care system
would have to know whether that system uses addresses and be changed accordingly.

Publish-Subscribe Channels provide some form of basic routing -- the message is routed to each
application that subscribed to the specific channel. This works in simple 'broadcast' scenarios but
often times routing rules are much more complicated. For example, an incoming order message
may have to be routed to a different system based on the size or the nature of the order. To avoid

making the applications responsible for determining a message's ultimate destination, the
middleware should include a Message Router that can route messages to the appropriate
destination.

Individual message routing patterns have helped us decouple the sender from the receiver(s). For
example, a Recipient List can help pull the knowledge about all recipients out of the sender and
into the middleware layer. Moving the logic into the middleware layer helps us in two ways.
First, many of the commercial middleware and EAI suites provide tools and libraries that are
specialized to performing these kind of tasks. This simplifies the coding effort because we do not
have to write the Message Endpoint-related code, such as Event-Driven Consumers or thread
management. Also, implementing the logic inside the middleware layer allows us to make the
logic "smarter" than would be practical inside of the application. For example, using a dynamic
Recipient List can avoid coding changes when new systems are added to the integration solution.

However, having a large number of individual Message Router components can be almost as hard
to manage as the integration spaghetti we were trying to resolve.

Use a central Message Broker that can receive messages from multiple destinations, determine
the correct destination and route the message to the correct channel. Implement the internals
of the Message Broker using the design patterns presented in this chapter.

Using a central Message Broker is sometimes referred to as hub-and-spoke architectural style, which
appears to be a descriptive name when looking at the diagram above.

The Message Broker pattern has a slightly different scope than most of the other patterns presented
in this chapter. It is an architecture pattern as opposed to individual design patterns we
presented in this chapter. As such, it is comparable to the Pipes and Filters architectural style,
which gives us a fundamental way of chaining components together to form more complex
message flows. Rather than just chaining individual components, the Message Broker concerns
itself with larger solutions and helps us deal with the inevitable complexity of managing such a
system.

The Message Broker is not a monolithic component. Internally, it uses many of the message
routing patterns presented in this chapter. So once you decide to use the Message Broker as an

architectural pattern, you can choose the correct Message Router design patterns to implement the
Message Broker.

The advantage of central maintenance of a Message Broker can also turn into a disadvantage.
Routing all messages through a single Message Broker can turn the Message Broker into a serious
bottleneck. A number of techniques can help us alleviate this problem. For example, the Message
Broker pattern only tells us to develop a single entity that performs routing. It does not prescribe
how many instances of this entity we deploy in the system at deployment time. If the Message
Broker design is stateless (i.e. if it is composed only of stateless components), we can easily deploy
multiple instances of the broker to improve throughput. The properties of a Point-to-Point Channel
ensure that only one instance of the Message Broker consumes any incoming message. Also, as in
most real-life situations, the ultimate solution ends up being a combination of a patterns.
Likewise, in many complex integration solutions it may make sense to design multiple Message
Broker components, each specializing on a specific portion of the solution. This avoids creating
the über-Message Broker that is so complex as to become unmaintainable. The apparent flip-side is
that we no longer have a single point of maintenance and could create a new form of "Message
Broker spaghetti". One excellent architectural style to use a combination of Message Brokers is a
Message Broker hierarchy (see picture). This configuration resembles a network configuration
composed out of individual subnets. If a message has to travel only between two applications
inside a "subnet" the local Message Broker can manage the routing of the message. If the message
is destined for another subnet, the local Message Broker can pass the message to the central
Message Broker who then determines the ultimate destination. The central Message Broker performs
the same functions as a local Message Broker, but instead of decoupling individual applications it
decouples whole subsystems consisting of multiple applications.

A Hierarchy of Message Brokers Provides Decoupling while Avoiding the "Über-Broker"

Because the purpose of the Message Broker is to reduce coupling between individual applications,
it usually has to deal with translating message data formats between applications. Having a
Message Broker abstract the routing of the message does not help the sending application if it has
to format the message in the (supposedly hidden) destination's message format. The next chapter
introduces a series of message transformation patterns to address these issues. In many cases, a
Message Broker uses a Canonical Data Model internally to avoid the N-square problem (the number

of translators required to translate between each and every recipient in a system grows with the
square of the number of participants).

Example: Commercial EAI Tools

Most commercial EAI tools provide tools to greatly simplify the creation of Message Broker
components for integration solutions. These tool suites typically provide a number of features
that support the development and deployment of Message Brokers:

• Built-in Endpoint code. Most EAI suites incorporate all code to send and receive
messages to and from the message bus. The developer does not have to concern itself with
writing any of the transport-related code.

• Visual Design tools. These tools allow the developer to compose the functionality of a
Message Broker using visual components, such as Routers, Decision Points, Transformers.
These tools make the flow of message visually intuitive and can reduce the coding effort for
many of these components to single-lines of code, e.g. an evaluation function or a rule.

• Runtime support. Most EAI packages also provide sophisticated run-time support in
both deploying the solution and monitoring the traffic flowing through the Message Broker.

Related patterns: Canonical Data Model, Event-Driven Consumer, Message Channel, Message Endpoint,
Message Router, Pipes and Filters, Point-to-Point Channel, Publish-Subscribe Channel, Recipient List

8．Message Transformation

Introduction

As described in the Message Translator, applications that need to be integrated by a messaging system rarely agree on
a common data format. For example, an accounting system is going to have a different notion of a Customer object

than a customer relationship management system. On top of that, one system may persist data in a relational model,

while another application uses flat files or XML documents. Integrating existing applications often times means that

we do not have the liberty of modifying the applications to work more easily with other systems. Rather, the

integration solution has to accommodate and resolve the differences between the varying systems. The Message

Translator pattern offers a general solution to such differences in data formats. This chapter explores specific variants

of the Message Translator.

Most messaging systems place specific requirements on the format and contents of a message header. We wrap

message payload data into an Envelope Wrapper that is compliant with the requirements of the messaging

infrastructure. Multiple Envelope Wrappers can be combined if a message is passed through across different

messaging infrastructures.

A Content Enricher is needed if the target system requires data fields that the originating system cannot supply. It has

the ability to look up missing information or compute it from the available data. The Content Filter does the opposite

-- it removes unwanted data from a message. The Claim Check also removes data from a message but stores it for later

retrieval. The Normalizer translates messages arriving in many different formats into a common format.

Message transformation is a deep topic in integration. Message Channels and Message Routers can remove basic

dependencies between applications by eliminating the need for one application to be aware of the other's location. One

application can send a message to a Message Channel and worry about what application will consume it. However,

message formats impose another set of dependency. If one application has to format messages in another application's

data format, the decoupling in form of the Message Channel is somewhat of an illusion. Any change to the receiving

application or the switch from one receiving application to another still requires a change to the sending application.

Message Translators help remove this dependency. Due to the importance of message formats and the transformation

between them, we can view any integration solution as two parallel systems. One deals with actual message data, the

other one with metadata, the data that describes message data. Many of the patterns used in creation of the message

flow can also be used to manage metadata. For example, a Channel Adapter can not only move messages in an out of a

system, but it can also extract metadata from external applications and load it into a central metadata repository. Using

this repository the integration developers can define transformations between the application metadata and the

Canonical Data Model.

Metadata Integration

For example, the picture above depicts the integration between two applications that need to exchange customer

information. Each system has a slightly different definition of customer data. Application A stores first and last name

in two separate fields whereas Application B stores it in one field. Likewise, Application A stores the customer's ZIP

code and not the state while Application B stores only the state code. Messages flowing from Application A to

Application B have to undergo a transformation so that Application B can receive data in the required format. Creating

the transformation is much simplified if the Channel Adapters can also extract metadata, e.g. data describing the

message format. This metadata can then be loaded into a repository, greatly simplifying the configuration and

validation of the Message Translator. The metadata can be stored in a variety of formats. A common format used for

XML messages are XSD's -- XML Schema Definitions. Other EAI tools implement proprietary metadata formats, but

allow administrators to import and export of metadata into different formats.

Many of the principles incorporated in these patterns are applicable outside of messaging integration. For example,

File Transfer has to perform transformation functions between systems. Likewise, Remote Procedure Invocation has

to make requests in the data format specified by the service that is to be called even if the application's internal format

is different.

This chapter describes variations of data transformation tasks. It does not go into the details of structural

transformations between entities (e.g., how to you transform between two data models if one model supports

many-to-many relationships between customer and address but the other model includes address fields on the customer

record). One of the oldest and still most relevant books on the topic of data representation and relationships is [Kent].

Envelope Wrapper

Most messaging systems divide the message data into a header and a body. The header contains
fields that are used by the messaging infrastructure to manage the flow of messages. However,
most endpoint systems that participate in the integration solution generally are not aware of
these extra data elements. In some cases, systems may even consider these fields as erroneous

because they do not match the message format used by the application. On the other hand, the
messaging components that route the messages between the applications may require the header
fields and would consider a message invalid if it does not contain the proper header fields.

How can existing systems participate in a messaging exchange that places specific
requirements on the message format, such as message header fields or encryption?

For example, assume the messaging system is using a proprietary security scheme. A valid
message would have to contain security credentials for the message to be accepted for processing
by other messaging components. Such a scheme is useful to prevent unauthorized users from
feeding messages into the system. Additionally, the message content may be encrypted to
prevent eavesdropping by unauthorized listeners -- a particularly important issue with
publish-subscribe mechanisms. However, existing applications that are being integrated via the
messaging systems are most likely not aware of the concepts of user identity or message
encryption. As a result, 'raw' messages need to be translated into messages that comply with the
rules of the messaging system.

Some large enterprises use more than one messaging infrastructure. As a result, a message may
have to be routed across messaging systems using a Messaging Bridge. Each messaging system is
likely to have different requirements for the format of the message body as well as the header.
This scenario is a case where we can learn by looking at existing TCP/IP-based network
protocols. In many cases, connectivity to another system is restricted to a specific protocol, for
example telnet or secure shell. In order to enable communication using another protocol (for
example, FTP), that protocol format has to be encapsulated into packets that conform to the
supported protocol. At the other end, the packet payload can be extracted. This process is called
'tunneling'.

When one message format is encapsulated inside another, the system may lose access to the
information inside the data payload. Most messaging systems allow components (for example, a
Content-Based Router) to access only data fields that are part of the defined message header. If one
message is packaged into a data field inside another message, the component may not be able to
use the fields from the original message to perform routing or transformation functions.
Therefore, some data fields may have to be elevated from the original message into the message
header of the new message format.

Use a Envelope Wrapper to wrap application data inside an envelope that is compliant with the
messaging infrastructure. Unwrap the message when it arrives at the destination.

The process of wrapping and unwrapping a message consists of five steps:

• The Message Source publishes a message in a raw format. This format is typically
determined by the nature of the application and does not comply with the requirements of
the messaging infrastructure.

• The Wrapper takes the raw message and transforms it into a message format that
complies with the messaging system. This may include adding message header fields,
encrypting the message, adding security credentials etc.

• The Messaging System processes the compliant messages.
• A resulting message is delivered to the Unwrapper. The unwrapper reverses any

modifications the wrapper made. This may include removing header fields, decrypting the
message or verifying security credentials.

• The Message Recipient receives a 'clear text' message.

An envelope typically wraps both the message header and the message body or payload. We can
think of the header as being the information on the outside of the envelope -- it is used by the
messaging system to route and track the message. The contents of the envelope is the payload or
body -- the messaging infrastructure does not care much about it (within certain limitations) until
it arrives at the destination.

It is typical for wrappers to add information to the raw message. For example, before an internal
message can be sent through the postal system, a ZIP code has to be looked up. In that sense,
wrappers incorporate some aspects of a Content Enricher. However, wrappers do not enrich the
actual information content, but add information that is necessary for the routing, tracking and
handling of messages. This information can be created on the fly (e.g. creation of a unique
message ID or adding a time stamp), it can be extracted from the infrastructure (e.g. retrieval of a
security context), or the data may be contained in the original message body and the split by the
wrapper into the message header (e.g. a key field contained in the 'raw' message). The last option
is sometimes referred to as 'promotion' because a specific field is 'promoted' from being hidden
inside the body to being prominently visible in the header.

Frequently, multiple wrappers and unwrappers are chained (see Postal System example below),
taking advantage of the layered protocol model. This results in a situation where the payload of a
message contains a new envelope, which in turn wraps a header and a payload section (see
picture)

A Chain of Wrappers Creates a Hierarchical Envelope Structure

Example: SOAP Message Format

The basic SOAP message format [SOAP 1.1] is relatively simple. It specifies an envelope that
contains a message header and a message body. The following example illustrates how the body
can contain another envelope, which in turn contains another header and body. The combined
message is sent to an intermediary who unwraps the outside message and forwards the inside
message. This chaining of intermediates is very common when crossing trust boundaries. I may
encode all my messages and wrap them inside another message so that no intermediary can see
the message content or header (e.g. the address of a message may be confidential). The recipient
then unwraps the message, decodes the payload and passes the unencoded message through the
trusted environment.

<env:Envelope xmlns:env="http://www.w3.org/2001/06/soap-envelope">

 <env:Header env:actor="http://example.org/xmlsec/Bob">

 <n:forward xmlns:n="http://example.org/xmlsec/forwarding">

 <n:window>120</n:window>

 </n:forward>

 </env:Header>

 <env:Body>

 <env:Envelope xmlns:env="http://www.w3.org/2001/06/soap-envelope">

 <env:Header env:actor="http://example.org/xmlsec/Alice"/>

 <env:Body>

 <secret xmlns="http://example.org/xmlsec/message">

 The black squirrel rises at dawn</secret>

 </env:Body>

 </env:Envelope>

 </env:Body>

</env:Envelope>

Example: TCP/IP

While we commonly use "TCP/IP" as one term, it actually comprises two protocols. The IP
protocol provides basic addressing and routing services while TCP provides a reliable,
connection-oriented protocol that is layered on top of IP. Following the OSI layer model, TCP is
Transport protocol while IP is a Networkprotocol. Typically, TCP/IP data is transported over an
Ethernet network, which implements the Link layer.

As a result, application data is wrapped into a TCP envelope first, which is then wrapped into an
IP envelope, which is then wrapped into an Ethernet envelope. Since networks are
stream-oriented an envelope can consists of both a header and a trailer. The following diagram
illustrates the structure of application data traveling over the Ethernet:

Application Data is Wrapped Inside Multiple Envelopes to be Transported over the Network

If you are interested in more details about TCP/IP, [Stevens] is guaranteed to quench your thirst
for knowledge.

Example: The Postal System

The Envelope Wrapper pattern can be compared to the postal system (see Figure). Let's assume an
employee creates an internal memo to a fellow employee. Any sheet of paper will be an
acceptable format for this message. In order to deliver the memo it has to be 'wrapped' into an
intra-company envelope that contains the recipient's name and department code. If the recipient
works in a separate facility, this intra-company 'message' will be stuffed into a large envelope
and mailed via the postal service. In order to make the new message comply with the USPS
requirements, it needs to feature a new envelope with ZIP code and postage. The US Postal
Service may decide to transport this envelope via air. To do so, it stuffs all envelopes for a specific
region into a mailbag, which is addressed with a bar code featuring the three-letter airport code
for the destination airport. Once the mailbag arrives at the destination airport, the wrapping
sequence is reversed until the original memo is received by the coworker. This example
illustrates the term "tunneling": Postal mail may be "tunneled" through air freight just like UDP
mulitcast packets may be tunneled over a TCP/IP connection in order to reach a different WAN
segment.

The postal system example illustrates the common practice of chaining wrappers and
unwrappers using the Pipes and Filters pattern. Messages may be wrapped by more than one step
and need to be unwrapped by a symmetric sequence of unwrapping steps. As laid out in the
Pipes and Filters pattern, keeping the individual steps independent from each other gives the
messaging infrastructure the flexibility to add or remove wrapping and unwrapping steps. For
example, encryption may no longer be required because all traffic is routed across a VPN as
opposed to the public Internet.

Related patterns: Content-Based Router, Content Enricher, Messaging Bridge, Pipes and Filters

Content Enricher

When sending messages from one system to another it is common for the target system to require
more information than the source system can provide. For example, incoming Address messages
may just contain the ZIP code because the designers felt that storing a redundant state code
would be superfluous. Likely, another system is going to want to specify both a state code and a
ZIP code field. Yet another system may not actually use state codes, but spell the state name out
because it uses free-form addresses in order to support international addresses. Likewise, one
system may provide us with a customer ID, but the receiving system actually requires the
customer name and address. An order message sent by the order management system may just
contain an order number, but we need to find the customer ID associated with that order, so we
can pass it to the customer management system. The scenarios are plentiful.

How do we communicate with another system if the message originator does not have all the
required data items available?

This problem is a special case of the Message Translator, so some of the same considerations apply.
However, this problem is slightly different from the basic examples described in the Message
Translator. The description of the Message Translator assumed that the data needed by the
receiving application is already contained in the incoming message, albeit in the wrong format. In
this new case, it is not a simple matter of rearranging fields, we actually need to inject additional
information to the message.

The Accounting System Requires More Information Than The Scheduling System Can Deliver

Let's consider the following example (see picture). A hospital scheduling system publishes a
message announcing that the patient has completed a doctor's visit. The message contain's the
patient's first name, his or her patient ID and the date of the visit. In order for the accounting
system to log this visit and inform the insurance company, it requires the full patient name, the
insurance carrier and the patient's social security number. However, the scheduling system does
not store this information, it is contained in the customer care system. What are our options?

Possible solutions for the Enricher problem

Option A: We could modify the scheduling system so it can store the additional information.
When the customer's information changes in the customer care system (e.g. because the patient
switches insurance carriers) the changes need to be replicated to the scheduling system. The
scheduling system can now send a message that includes all required information. Unfortunately,
this approach has two significant drawbacks. First, it requires a modification to the scheduling
system's internal structure. In most cases, the scheduling system is going to be a packaged
application and may not allow this type of modification. Second, even if the scheduling system is
customizable, we need to consider that we are making a change to the system based on a the
specific needs of another system. For example, if we also want to send a letter to the patient
confirming the visit we would have to change the scheduling system again to accommodate the
customer's mailing address. The integration solution would be much more maintainable if we
decouple the scheduling system from the specifics of the applications that consume the "Doctor
Visit" message.

Option B: Instead of storing the customer's information inside the scheduling system, the
scheduling system could request the SSN and carrier data from the customer care system just

before it is sending the 'Doctor Visit' message. This solves the first problem -- we no longer have
to modify the storage of the scheduling system. However, the second problem remains: the
scheduling system needs to know that the SSN and carrier information is required in order to
notify the accounting system. Therefore, the semantics of the message is more similar to 'Notify
Insurance' than 'Doctor Visit'. In a loosely coupled system we do not want one system to instruct
the next one on what to do. We rather send an Event Message and let the other systems decide
what to do. In addition, this solution couples the scheduling system more tightly to the customer
care system because the scheduling system now needs to know where to get the missing data.
This ties the scheduling system to both the accounting system and the customer care system. This
type of coupling is undesirable because it leads to brittle integration solutions.

Option C: We can avoid some of these dependencies if we send the message to the customer care
system first instead of the accounting system. The customer care system can then fetch all the
required information and send a message with all required data to the accounting system. This
decouples the scheduling system nicely from the subsequent flow of the message. However, now
we implement the business rule that a the insurance company receives a bill after the patient
visits the doctor inside the customer care system. This requires us to modify the logic inside the
customer care system. If the customer care system is a packaged application, this modification
may be difficult or impossible. Even if we can make this modification, we now make the
customer care system indirectly responsible for sending bills messages. This may not be a
problem if all the data items required by the accounting system are available inside the customer
care system. If some of the fields have to be retrieved from other systems we are in a similar
situation to where we started.

Option D (not shown): We could also modify the accounting system to only require the customer
ID and retrieve the SSN and carrier information from the customer care system. This approach
has two disadvantages. First, we now couple the accounting system to the customer care system.
Second, this option again assumes that we have control over the accounting system. In most cases,
the accounting system is going to be a packaged application with limited options for
customization.

Use a specialized transformer, a Content Enricher, to access an external data source in order to
augment a message with missing information.

The Content Enricher uses information inside the incoming message (e.g. key fields) to retrieve
data from an external source. After the Content Enricher retrieves the required data from the
resource, it appends the data to the message. The original information from the incoming
message may be carried over into the resulting message or may no longer be needed, depending
on the specific needs of the receiving application.

The additional information injected by the Content Enricher has to be available somewhere in the
system. The most common sources for the new data are:

• Computation The Content Enricher may be able to compute the missing information. In
this case, the algorithm incorporates the additional information. For example, if the receiving
system requires a state code but the incoming message only contains a ZIP code. Or, a
receiving system may require a data format that specifies the total size of the message. The
Content Enricher can add the length of all message fields and thus compute the message size.
This form of Content Enricher is very similar to the basic Message Translator because it needs
no external data source.

• Environment The Content Enricher may be able to retrieve the additional data from the
operating environment. The most common example is a time stamp. For example, the
receiving system may require each message to carry a time stamp. if the sending system does
not include this field, the Content Enricher can get the current time from the operating system
and add it to the message.

• Another System This option is the most common one. The Content Enricher has to retrieve
the missing data from another system. This data resource can take on a number of forms,
including a database, a file, an LDAP directory, a system, or a user who manually enters
missing data.

In many cases, the external resource required by the Content Enricher may be situated on another
system or even outside the enterprise. Accordingly, the communication between the Content
Enricher and the resource can occur via message channels or via any other communication
mechanism. Since the interaction between the Content Enricher and the data source is by
definition synchronous (the Content Enricher cannot send the enriched message until the data
source returns the requested data), a synchronous protocol (e.g. HTTP or an ODBC connection to
a database) may result in better performance than using asynchronous messaging. The Content
Enricher and the data source are inherently tightly coupled, so achieving loose coupling through
Message Channels is not as important.

Returning to our example, we can insert a Content Enricher to retrieve the additional data from
the customer care system (see picture). This way, the scheduling system is nicely decoupled from
having to deal with insurance information or the customer care system. All it has to do is publish
the 'Doctor Visit' message. The Content Enricher component takes care of retrieving the required
data. The accounting system also remains independent from the customer care system.

Applying the Enricher to the Patient Example

The Content Enricher is used in many occasions to resolve references contained in a message. In
order to keep message small and easy to manage, often times we choose to pass simple references
to objects rather than passing a complete object with all data elements. These references usually
take the form of keys or unique IDs. When the message needs to be processed by a system, we
need to retrieve the required data items based on the object references included in the original
message. We use a Content Enricher to perform this task. There are some apparent trade-offs
involved. Using references reduces the data volume in the original messages, but requires
additional look-ups in the resource. Whether the use of references improves performance
depends on how many components can operate simply on references versus how many
components need to use an Content Enricher to restore some of the original message content. For
example, if a message passes through a long list of intermediaries before it reaches the final
recipient, using an object reference can decrease message traffic significantly. We can insert a
Content Enricher as the last step before the final recipient to load the missing information into the
message. If the message already contains data that we we might not want to carry along the way,
we can use the Claim Check to store the data and obtain a reference to it.

Example: Communication with External Parties

A Content Enricher is also commonly used when communicating with external parties that require
messages to be compliant with a specific message standard (e.g. ebXML). Most of these standards
require large messages with a long list of data. We can usually simplify our internal operations
significantly if we keep internal messages as simple as possible and then use a Content Enricher to
add the missing fields whenever we send a message outside of the organization. Likewise, we
can use a Content Filter to strip unnecessary information from incoming messages (see picture).

Using a Content Enricher / Content Filter Pair When Communicating with External Parties

Related patterns: Content Filter, Event Message, Message Channel, Message Translator, Claim Check

Content Filter

The Content Enricher helps us in situations where a message receiver requires more - or different -
data elements than the message creator provides. There are surprisingly many situations where
the opposite effect is desired: removing data elements from a message.

How do you simplify dealing with a large message, when you are interested only in a few data
items?

Why would we want to remove valuable data elements from a message? One common reason is
security. A requestor of data may not be authorized to see all data elements that a message
contains. The service provider may not have knowledge of a security scheme and always return
all data elements regardless of user identity. We need to add a step that removes sensitive data
based on the requestor's proven identity. For example, the payroll system may expose only a
simple interface that returns all data about an employee. This data may include payroll
information, social security numbers and other sensitive information. If you are trying to build a
service that returns an employee's start date with the company you may want to eliminate all
sensitive information from the result message.

Another reason to remove data elements is to simplify message handling and to reduce network
traffic. In many instances, processes are initiated by messages received from business partners.
For obvious reasons, it is desirable to base communication with third parties on a standardized
message format. A number of standards bodies and committees define standard XML data
formats for certain industries and applications. Well-known examples are RosettaNet, ebXML,
ACORD and many more. While these XML formats are useful to conduct interaction with
external parties based on an agreed-upon standard, the documents can be very large. Many of the
documents have hundreds of fields, consisting of multiple nested levels. Such large documents
are difficult to work with for internal message exchange. For example, most visual (drag-drop

style) transformation tools become unusable if the documents to be mapped have hundreds of
element. Also, debugging becomes a major nightmare. Therefore, we want to simplify the
incoming documents to include only the elements we actually require for our internal processing
steps. In a sense, removing elements enriches the usefulness of such a message, because
redundant and irrelevant fields are removed, leaving a more meaningful message and less room
for developer mistakes.

Use a Content Filter to remove unimportant data items from a message leaving only important
items.

The Content Filter does not necessarily just remove data elements. A Content Filter is also useful to
simplify the structure of the message. Often times, messages are represented as tree structures.
Many messages originating from external systems or packaged applications contain many levels
of nested, repeating groups because they are modeled after generic, normalized database
structures. Frequently, known constraints and assumptions make this level of nesting
superfluous and a Content Filter can be used to 'flatten' the hierarchy into a simple list of elements
than can be more easily understood and processed by other systems.

Multiple Content Filters can be used as a Filtering Splitter (see Splitter) to break one complex
message into individual messages that each deal with a certain aspect of the large message.

Example: Database Adapter

Many integration suites provide Channel Adapters to connect to existing systems. In many cases,
these adapters publish messages whose format resembles the internal structure of the application.
For example, let's assume we connect a database adapter to a database with the following
schema:

An Example Database Schema

It is very typical for a physical database schema to store related entities in separate tables that are
linked by foreign keys and relation tables (e.g. ACCOUNT_CONTACT links the ACCOUNT and
CONTACT tables). Many database adapters will translate these related tables into a hierarchical
message structure that can contain additional fields such as primary and foreign keys that may
not be relevant to the message receiver. In order to make processing a message easier, we can use
a Content Filter to flatten the message structure and extract only relevant fields. The example
shows the implementation of a Content Filter using a visual transformation tool. We can see how
we reduce the message from over a dozen fields spread across multiple levels into a simple
message with five fields. It will be much easier (and more efficient) for other components to work
with the simpler message.

Simplifying a Message Published by a Database Adapter

A Content Filter is not the only solution to this particular problem. For example, we could
configure a view in the database that resolves the table relationships and returns a simple result

set. This may be a simple choice if we have the ability to add views to the database. In many
situations, enterprise integration aims to be as little intrusive as possible and that guideline may
include not adding views to a database.

Related patterns: Channel Adapter, Content Enricher, Splitter

Claim Check

The Content Enricher tells us how we can deal with situations where our message is missing
required data items. The Content Filter lets us remove uninteresting data items from a message.
Sometimes, we want to remove fields only temporarily. For example, a message may contain a
set of data items that may be needed later in the message flow, but that are not necessary for all
intermediate processing steps. We may not want to carry all this information through each
processing step because it may cause performance degradation and makes debugging harder
because we carry so much extra data.

How can we reduce the data volume of message sent across the system without sacrificing
information content?

Moving large amounts of data via messages may be inefficient. Some messaging systems even
have hard limits as to the size of messages. Other messaging systems use an XML representation
of data, which can increase the size of a message by an order of magnitude or more. So while
messaging provides the most reliable and responsive ay to transmit information, it may not be
the most efficient.

A simple Content Filter helps us reduce data volume but does no guarantee that we can restore
the message content later on. Therefore, we need to store the complete message information in a
way that we can retrieve it later.

Because we need to store data for each message, we need a key to retrieve the correct data items
associated with a message. We could use the message ID as the key, but that would not allow
subsequent components to pass the key on because the message ID changes with each message.

Store message data in a persistent store and pass a Claim Check to subsequent components.
These components can use the Claim Check to retrieve the stored information.

The Claim Check pattern consists of the following steps:

1. A message with data arrives.
2. The "Check Luggage" component generates a unique key for the information. This key

will be used later as the Claim Check
3. The Check Luggage component extracts the data from the message and stores it in a

persistent store, e.g. a file or a database. It associates the stored data with the key .
4. It removes the persisted data from the message and adds the Claim Check.
5. Another component can use a Content Enricher to retrieve the data based on the Claim

Check.

This process is analogous to a luggage check at the airport. If you do not want to carry all your
luggage with you, you simply check it with the airline counter. In return you receive a sticker on
your ticket that has a reference number that uniquely identifies each piece of luggage you
checked. Once you reach your final destination, you can retrieve your luggage.

As the picture illustrates, the data that was contained in the original message still needs to be
"moved" to the ultimate destination. So did we gain anything? Yes, because transporting data via
messaging may be less efficient than storing it in a central data store. For example, the message
may undergo multiple routing steps that do not require the large amount of data. Using a
messaging system, the message data would be marshaled and unmarshaled, possibly encrypted
and decrypted at every step. This type of operation can be very CPU intensive and would be
completely unnecessary of the data is not needed by an intermediate step but only by the final
destination. The Claim Check also works well in a scenario where a message travels through a
number of components and returns to the sender. In this case, the "Check Luggage" component
and the Content Enricher are local to the same component and the data never has to travel across
the network (see below):

The Data May Be Stored and Retrieved Locally

Choosing a Key

How should we choose a key for the data? A number of options spring to mind:

• A business key may already be contained in the message body, e.g. a Customer ID.
• The message may contain a message ID that can be used to associate the data in the data

store with the message.
• We can generate a unique ID.

Reusing an existing business key seem like the easiest choice. If we have to stow away some
customer detail we can reference it later by the customer ID. When we pass this key to other
components we need to decide whether we want these components to be aware that the key is a
customer ID as opposed to just an abstract key. Representing the key as an abstract key has the
advantage that we can process all keys in the same way and can create a generic mechanism to
retrieve data from the data store based on an abstract key.

Using the message ID as the key may seem convenient but is generally not a good idea. Using a
message ID as a key for data retrieval results in dual semantics being attached to a single data
element and can cause conflicts. For example, let's assume we need to pass the reference on to
another message. The new message is supposed to be assigned a new, unique ID, but then we
can't use that new ID anymore to retrieve data from the data store. The use of a message ID can
be meaningful only in a circumstance where we want the data to be accessible only within the

scope of the single message. Therefore, in general it is better to assign a new element to hold the
key and avoid this bad form of 'element reuse'.

The data may be stored in the data store only temporarily. How do we remove unused data? We
can modify the semantics of the data retrieval from the data store to delete the data when it is
read. In this case we can retrieve the data only once, which may actually be desirable in some
cases for security reasons. However, it does not allow multiple components to access the same
data. Alternatively, we can attach an expiration date to the data and define a 'garbage collection'
process that periodically removes all data over a certain age. As a third option, we may not want
to remove any data. This may be the case because we use a business system as the data store (e.g.
an accounting system) and need to maintain all data in that system.

The implementation of a data store can take on various forms. A database is an obvious choice,
but a set of XML files or an in-memory message store can serve as a data store just as well.
Sometimes, we may use an application as the data store. It is important that the data store is
reachable by components in other parts of the integration solution so that these parts can
reconstruct the original message.

Using a Claim Check to Hide Information

While the original intent of the Claim Check is to avoid sending around large volumes of data, it
can also serve other purposes. Often times we want to remove sensitive data before sending a
message to an outside party (see picture). This accomplishes that outside parties receive data only
on a 'need to know basis'. For example when we send employee data to an external party we may
prefer not to reference employees by some magic unique ID and eliminate fields such as social
security number. After the outside party has completed the required processing, we reconstruct
the complete message by merging data from the data store and the message returned from the
outside party. We may even generate special unique keys for these messages so that we restrict
the actions the outside party can take by the key it possesses. This will restrict the outside party
from maliciously feeding messages into our system. Messages containing an invalid (or expired
or already used) key will be blocked by the Content Enricher attempting to retrieve message data
using the key.

Using a Process Manager with a Claim Check

If we interact with more than one external party, a Process Manager can serve as a Claim Check. A
Process Manager creates process instances (sometimes called 'tasks' or 'jobs') when a message
arrives. The Process Manager allos additional data to be associated with each individual process
instance. In effect, the process engine now serves as the data store, storing our message data. This
allows the Process Managerto send messages to external parties that contain only the data relevant
to that party. The messages do not have to carry all the information contained in the original
message since that information is kept with the process' data store. When the Process
Managerreceives a response message from an external party it re-merges the new data with the
data stored by the process instance.

Related patterns: Content Filter, Content Enricher, Process Manager

Normalizer

In a business-to-business (B2B) integration scenario it is quite common for an enterprise to receive messages from

different business partners. These message may have the same meaning, but follow different formats, depending on the

partners' internal systems and preferences. For example, we built a solution for a pay-per-view provider that has to

accept and process viewership information from over 1700 (!) affiliates, most of which did not conform to a standard

format.

How do you process messages that are semantically equivalent, but arrive in a different format?

The easiest solution from a technical perspective may seem to dictate a uniform format on all participants. This may

work if the business is a large corporation and has control over the B2B exchange or the supply channel. For example,

if General Motors would like to receive order status updates from their suppliers in a common message format, we can

be pretty sure that Joe's Supplier business is likely to conform to the 'guidelines'. In many other situations, however, a

business is not going to have such a luxury. In the contrary, many business models position the message recipient as an

'aggregator' of information and part of the agreement with the individual participants is that a minimum of changes is

required to their systems infrastructure. As a result, you find the aggregator willing to process information arriving in

any data format ranging from EDI records or comma separated files to XML documents or Excel spreadsheets arriving

via e-mail.

One important consideration when dealing with a multitude of partners is the rate of change. Not only may each

participant prefer a different data format to begin with -- the preferred format may also change over time. In addition,

new participants may join while others drop off. Even if a specific partner makes changes to the data format only once

every couple of years, dealing with a few dozen partners can quickly result in monthly or weekly changes. It is

important to isolate these changes from the rest of the processing as much as possible to avoid a "ripple-effect" of

changes throughout the whole system.

To isolate the remainder of the system from the variety of incoming message formats, you need to transform the

incoming messages into a common format. Because the incoming messages are of different types, you need a different

Message Translator for each message data format.The easiest way to accomplish this is to use a collection of Datatype

Channels, one for each message type. Each Datatype Channel is then connected to a different Message Translator.

The drawback of this approach is that a large number of message formats translates into an equally large number of

message channels.

Use a Normalizer to route each message type through a custom Message Translator so that the resulting

messages match a common format.

The Normalizer uses a Message Router to route the incoming message to the correct Message Translator. This

requires the Message Router to detect the type of the incoming message. Many messaging systems equip each message

with a type specifier field in the Message Header to make this type of task simple. However, in many B2B scenarios

messages do not arrive as messages compliant with the enterprise's internal messaging system, but in diverse formats

such as comma separated files or XML document without associated schema. While it is certainly best practice to

equip any incoming data format with a type specifier we know all to well that the world is far from perfect. As a result,

we need to think of more general ways to identify the format of the incoming message. One common way for

schema-less XML documents is to use the name of the root element to assume the correct type. If multiple data

formats use the same root element, you can use XPATH expressions to determine the existence of specific sub-nodes.

Comma-separated files can require a little more creativity. Sometimes you can determine the type based on the number

of fields and the type of the data (e.g. numeric vs. string). If the data arrives as files, the easiest way may be to use the

file name or the file folder structure as a surrogate Datatype Channel. Each business partner can name the file with a

unique naming convention. The Message Router can then use the file name to route the message to the appropriate

Message Translator.

Adding a Message Router also allows the same transformation to be used for multiple business partners. That might be

useful if multiple business partners use the same format or if a transformation is generic enough to accommodate

multiple message formats. For example, x-path expressions are great at picking out elements from XML documents

even if the documents vary in format.

Since a Normalizer is a common occurance in messaging solutions, we created a short-hand icon for it:

Related patterns: Datatype Channel, Message Router, Message Translator

Canonical Data Model

I am designing several applications to work together through Messaging. Each application has its
own internal data format.

How can you minimize dependencies when integrating applications that use different data
formats?

Independently developed applications tend to use different data formats because each format
was designed with just that application in mind. When an application is designed to send
messages to or receive messages from some unknown application, the application will naturally
use the message format that is most convenient for it. Likewise, commercial adapters used to
integrate packaged applications using publish and consume messages in a data format that
resembles the application's internal data structure.

The Message Translator resolves differences in message formats without changing the applications
or having the applications know about each other's data formats. However, if a large number of
applications communicate with each other, one Message Translator may be needed between each
pair of communicating applications (see picture).

This approach requires a large number of Message Translators, especially when considering that
each integrated application may publish or consume multiple message types. The number of
required Message Translators increases exponentially with the number of integrated applications
which quickly becomes unmanageable.

While the Message Translator provides an indirection between the message formats used by two
communicating applications it is still dependent on the message formats used by either

application. As a result, if an application's data format changes, all Message Translators between
the changing application and all other applications that it communicates with have to change.
Likewise, if a new application is added to the solution, new Message Translators have to be created
from each existing application to the new application in order to exchange messages. This
situation creates a nightmare out of having to maintain all Message Translators.

We also need to keep in mind that each additional transformation step injected into a message
flow can increase latency and reduce message throughput.

Therefore, design a Canonical Data Model that is independent from any specific application.
Require each application to produce and consume messages in this common format.

The Canonical Data Model provides an additional level of indirection between application's
individual data formats. If a new application is added to the integration solution only
transformation between the Canonical Data Model has to created, independent from the number of
applications that already participate.

The use a Canonical Data Model seems complicated if only a small number of applications
participate in the integration solution. However, the solution quickly pays off as the number of
applications increases. If we assume that each application sends and receives message to and
from each other application, a solution consisting of 2 applications would require only 2 Message
Translators if we translate between the applications' data formats directly whereas the Canonical
Data Model requires 4 Message Translators. A solution consisting of 3 applications requires 6
Message Translators with either approach. However, a solution consisting of 6 applications
requires 30(!) Message Translators without a Canonical Data Model and only 12 Message Translators
when using a Canonical Data Model.

The use of a Canonical Data Model can also be very useful if an existing application is likely to be
replaced by another application in the future. For example, is a number of applications interface
with a legacy system that is likely to be replaced by a new system in the future, the effort of
switching from one application to the other is much reduced if the concept of a Canonical Data
Model is built into the original solution.

How do you make applications conform to the common format? You have three basic choices:

• Change the applications internal data format. This may be in theory possible, but is
unlikely in a complex real-life scenario. If it was easy to just make each application to
natively use the same data format, we would be better off using Shared Database and not
Messaging.

• Implement a Messaging Mapper inside the application. Custom applications can use a
mapper to generate the desired data format.

• Use an external Message Translator. You can use an external Message Translator to
translate from the app-specific message format into the format specified by the Canonical Data
Model.

Whether to use a Messaging Mapper or an external Message Translator depends on the complexity
of the transformation and the maintainability of the application. Packaged applications usually
eliminate the use of a Messaging Mapper because the source code is not available. For custom
applications the choice depends on the complexity of the transformation. Many integration tool
suites provide visual transformation editors that allow faster construction of mapping rules.
However, these visual tools can get unwieldy if transformations are complex.

The use of a Canonical Data Model does introduce a certain amount of overhead into the message
flow. Each message now has to undergo two translation steps instead of one -- one translation
from the source application's format into the common format and from the common format into
the target application's format. For this reason, the use of a Canonical Data Model is sometimes
referred to as "double translation" (transforming directly from one application's format to the
other is called "direct translation"). Each translation step causes additional latency in the flow of
messages. Therefore, for very high throughput systems direct translation can be the only choice.
This trade-off between maintainability and performance is common. The best advice is to use the
more maintainable solution (i.e., the Canonical Data Model) unless performance requirements do
not allow it. A mitigating factor may be that fact that many translations are stateless and
therefore lend themselves to load balancing with multiple Message Translators executing in
parallel.

Designing a Canonical Data Model can be difficult. Designers should strive to make the unified
model work equally well for all applications being integrated, but in reality this ideal is difficult
to achieve. The chances of successfully definition a Canonical Data Model improve when
considering that the Canonical Data Model does not have to model the complete data model of all
applications, but only the portion that participates in messaging (see picture). This can
significantly reduce the complexity of creating the Canonical Data Model.

Using a Canonical Data Model can also have political advantages. Using a Canonical Data Model
allows developers and business users to discuss the integration solution in terms of the
company's business domain, not a specific package implementation. For example, packaged
applications may represent the common concept of a customer in many different internal formats,
such as 'account', 'payer', 'contact' etc. Defining a Canonical Data Model is often the first step to
resolving case of semantic dissonance between applications (see [Kent].

The picture in the pattern introduction showing the large number of transformers needed to
translate between each and every application looks surprisingly similar to the picture in
Introduction to Message Routing. This reminds us that dependencies between applications can exist
at multiple levels. The use of Message Channels provides a common transport layer between
applications and removes dependencies between application's individual transport protocols.
Message Routers can provide location-independence so that a sending application does not have
to depend on the location of the receiving application. The use of a common data representation
such as XML removes dependencies on any application-specific data types. Finally, the Canonical
Data Model resolves dependencies in the data formats and semantics used by the applications.

Since the canonical format is likely to change over time, it should specify a Format Indicator.

Example: WSDL

When accessing an external service from your application the service may already specify a
Canonical Data Model to be used. In the world of XML Web services, the data format is specified
by a WSDL document, the Web Services Definition Language (see [WSDL 1.1]. The WSDL
specifies the structure of request and reply messages that the service can consume and produce.
In most cases, the data format specified in the WSDL is different than the internal format of the
application providing the service. Effectively, the WSDL specifies a Canonical Data Model to be
used by both parties participating in the conversation. The double-translation consists of a
Messaging Mapper or a Gateway in the service consumer and a Remote Facade [GoF] in the service
provider.

Example: TIBCO ActiveEnterprise

Many EAI tool suites provide a complete set of tools to define and describe the canonical data
format. For example, the TIBCO ActiveEnterprise suite provides the TIB/Designer that allows
the user to inspect all common message definitions. Message definitions can be imported from or
exported to XML schema definitions. When implementing a Message Translator using built-in
visual tool set, the tool presents the designer with both the application specific data format and
the Canonical Data Model stored in the central data format repository.

The TIBCO Designer - A UI Tool to Maintain a Canonical Data Model

Related patterns: Format Indicator, Message Channel, Message Router, Introduction to Message
Routing, Message Translator, Messaging, Messaging Mapper, Shared Database

9．Interlude：Composed Messaging

Introduction

Overview

This chapter demonstrates how to compose routing and transformation patterns into a larger
solution. We chose to model the process of a consumer obtaining quotes for a loan from multiple
banks. We simplified the process a little bit so we can focus on a discussion of integration
patterns as opposed to holding a lecture in consumer financial services. Based on the patterns
that we defined we discuss and create three alternative implementations for this process, using
different programming languages, technologies and messaging models.

Obtaining a Loan Quote

When shopping for a loan, a customer usually calls several banks to find the deal with the best
possible interest rate. Each bank asks the customer for his or her social security number, the
amount of the loan and the desired term , i.e. the number of months until the loan has to be paid
off. Each bank then investigates the customer's credit background, usually by contacting a credit
agency. Based on the requested terms and the customer's credit history, the bank responds with
an interest rate quote to the consumer (or declines thankfully). Once the customer has received
quotes from all banks, he or she can then select the best offer, i.e. the lowest interest rate.

A Consumer Talking to Banks to Get a Loan Quote

Because contacting multiple banks with a loan quote request is a tedious task, loan brokers offer
this service to consumers. A loan broker is typically not affiliated with any one bank but has
access to many lending institutions. The broker gathers the customer data once and contacts the
credit agency to obtain the customer's credit history. Based on the credit score and history, the
broker presents the request to a number of banks that are best suited to meet the customer’s

criteria. The broker gathers the resulting quotes from the banks and selects the best offer (i.e. the
lowest interest rate) to pass back to the consumer.

A Loan Broker Acting as Intermediary

Designing the Message Flow

We want to design a loan broker system using integration patterns in the previous chapters. To
do this, let's first list the individual tasks that the loan broker needs to perform.

1. Receive the consumer's loan quote request
2. Obtain credit score and history from credit agency
3. Determine the most appropriate banks to contact
4. Send a request to each selected bank
5. Collect responses from each selected bank
6. Determine the best response
7. Pass the result back to the consumer

Let's have a look to see which patterns could help us implement the loan broker. The first step
describes how the broker receives the incoming request. We cover this topic in much more detail
in the following chapter on endpoint patterns. So for now, let's skip over this step and assume the
message is somehow received by the broker. Now, the broker has to retrieve some additional
information, i.e. the customer's credit score. A Content Enricher sounds like the ideal choice for
this task. Once the broker has the complete information, the broker has to determine the
appropriate banks to route the request message to. We can accomplish this with another Content
Enricher that computes the list of recipients for the request. Sending a request message to multiple
recipients and re-combining the responses back into a single message is the specialty of the
Scatter-Gather. The Scatter-Gather can use a Publish-Subscribe Channel or a Recipient List to send the
request to the banks. Once the banks reply with their rate quotes, the Scatter-Gather aggregates
the individual rate quotes into a single quote for the consumer using an Aggregator.

If we model the message flow using these patterns, we arrive at the following design:

Simple Loan Broker Design

We have not yet accounted for the likely event that each bank may use a slightly different
message format for the loan request and response. Because we want to separate the routing and
aggregation logic from the banks' proprietary formats, we need to insert Message Translators into
the communication lines between the broker and the banks. We can use a Normalizer to translate
the individual responses into a common format:

Complete Loan Broker Design

Sequencing: Synchronous vs. Asynchronous

So far, we have described the flow of the messages and the routing and transformation patterns
we can use to describe the design of the loan broker component. We have not yet discussed the
timing of the broker operation. We have two primary choices:

• Synchronous (Sequential): The broker asks one bank for the quote and waits for a
response.

• Asynchronous (Parallel): The broker sends all quote requests at once and waits for the
answers to come back.

We can use UML sequence diagrams to illustrate the two options. The synchronous option
implies a sequential processing of all loan requests (see picture). This solution has the advantage
of being simpler to manage because we do not have to deal with any concurrency issues or
threads. However, it is an inefficient solution because we do not take advantage of the fact that
each bank possesses independent processing power and could be executing requests
simultaneously. As a result, the consumer might have to wait a long time for an answer.

Synchronous, Sequential Processing of Loan Requests

The asynchronous solution issues all requests right away so that each bank can start processing.
As the banks finish the computation, they return the results to the loan broker. This solution
allows for a much quicker response. For example, if all banks take a similar amount of time to
produce a loan quote, this solution is almost n times faster where n is the number of banks we are

dealing with. The loan broker now needs to be able to accept the loan quote messages in any
order because there is no guarantee that responses arrive in the same order that requests were
made. The following sequence diagram illustrates this option. The half arrowhead on the loan
quote requests indicate asynchronous invocations.

Asynchronous, Parallel Processing of Loan Requests

Another significant advantage of using asynchronous invocation over a message queue is the
ability to create more than one instance of a service. For example, if it turns out that the credit
bureau is a bottleneck, we could decide to run two instances of the credit bureau component.
Because the loan broker sends the request message to a queue instead of directly to the credit
bureau component it does not matter which component instance processes the message as long as
the response is put back onto the response channel.

Addressing: Distribution vs. Auction

Using a Scatter-Gather to obtain the best quote allows us to choose from two addressing
mechanisms, a Recipient List or a Publish-Subscribe Channel. The decision primarily depends on
how much control do we want to exert over the banks who are allowed to participate in a specific
loan request? Again, we have a number of choices:

• Fixed: The list of banks is hard-coded. Each loan request goes to the same set of banks.
• Distribution: The broker maintains criteria on which banks are a good match for a

specific request. For example, it would not send a quote request for a customer with a
poor credit history to a bank that specializes in premier customers.

• Auction: The broker broadcasts the request using a Publish-Subscribe Channel. Any bank
that is interested is allowed to subscribe to the channel and 'bid' on the request. Banks can
subscribe or unsubscribe at will. Each bank can still apply its own criteria on whether to
submit a bid.

Which option is best for our scenario? As always, there is no simple "and the answer is...", but the
choice is driven by both business and technical preferences and constraints. The first option is
simple and gives the broker control over the list of banks. However, if new banks come and go
frequently, the solution can result in an administrative burden. Also, the bank may not be happy
to be receiving a bunch of irrelevant requests because each request incurs a certain internal cost
for the bank. Also, to maintain the simplicity of this approach, the aggregation strategy is more
likely to require banks to submit a response. Banks may want to reserve the right to withhold
from the bid.

A distribution approach (using a Recipient List) gives the broker more control over which bank to
involve in each loan request. This allows the broker to be more efficient by reducing the number
of requests. It also allows the broker to prefer certain banks based on the business relationship.
On the downside, it requires additional business logic to be implemented and maintained inside
the loan broker component. Both the distribution and the fixed approach require a separate
Message Channel for each participant in order to control the message flow.

Using a Publish-Subscribe Channel broadcasts a loan request to all subscribing banks and lets each
bank determine which requests to service. Each bank can use a Message Filter or implement a
Selective Consumer to filter out undesirable loan requests. This approach renders the loan broker
pretty much maintenance free in case of adding or removing banks but it requires more work on
the side of the banks. This solution requires only a single Message Channel, but it has to be
implemented as a Publish-Subscribe Channel. Many efficient publish-subscribe schemes use IP
Multicast that typically does not route across wide-area networks or the Internet. Other
implementations emulate a Publish-Subscribe Channel by using an array of Point-to-Point Channels
and a Recipient List. This approach preserves the simple semantics of a Publish-Subscribe Channel,
but is less efficient in its use of channels and network bandwidth. For additional trade-offs
between routing and pub-sub plus filtering, see the description of the Message Filter.

Aggregating Strategies: Multiple Channels vs. Single

Channel

When receiving loan quotes from the bank we have similar design choices. We can have all banks
submit their responses to a single response channel or we can have a separate response channel
for each bank. Using a single channel reduces the maintenance burden of setting up a separate

channel for each participating bank, but requires each bank reply message to include a field
identifying the bank who issued the quote. If we use a single response channel, the Aggregator
may not know how many response messages to expect unless the Recipient List passes this
information to the Aggregator (we call this an Initialized Aggregator). If we use an auction-style
Publish-Subscribe Channel the number of possible responses is unknown to the loan broker so that
the Aggregator has to employ a completeness condition that does not depend on the total number
of participants. For example, the Aggregator could simply wait until it has a minimum of three
responses. But even that would be risky if temporarily only two banks participate. In that case,
the Aggregator could time out and report that it received an insufficient number of responses.

Managing Concurrency

A service such as a loan broker should be able to deal with multiple clients wanting to use the
service concurrently. For example, if we expose the loan broker function as a Web service or
connect it to a public Web site we do not really have any control over the number of clients and
we may receive hundreds or thousands of concurrent requests. We can enable the loan broker to
process multiple concurrent requests using two different strategies:

• Execute multiple instances.
• A single even-driven instance

The first option maintains multiple parallel instances of the loan broker component. We can
either start a new instance for each incoming request or maintain a 'pool' of active loan broker
processes and assign incoming requests to the next available process (using a Message Dispatcher).
If no process is available we would queue up the requests until a process becomes available. A
process pool has the advantage that we can allocate system resources in a predictable way. For
example, we can decide to execute a maximum of 20 loan broker instances. In contrast, if we
started a new process for each request we could quickly choke the machine if a spike of
concurrent requests arrives. Also, maintaining a pool of running processes allows us to 'reuse' an
existing process for multiple requests, saving time for process instantiation and initialization.

Because much of the 'processing' required by the loan broker is to wait for replies from external
parties (the credit bureau and the banks) running many parallel processes may not be a good use
of system resources. Instead, we can run a single process instance that reacts to incoming
message events as they arrive. Processing an individual message (e.g. a bank quote) is a relatively
simple task so that a single process may be able to service many concurrent requests. This
approach uses system resources more efficiently and simplifies management of the solution due
to the fact that we only have to monitor a single process instance. The potential downside is the
limited scalability because we are tied to one process. Many high-volume applications use a
combination of the two techniques, executing multiple parallel processes each of which can
handle multiple requests concurrently.

Executing multiple concurrent requests requires us to associate each message in the system to the
correct process instance. For example, it may be most convenient for a bank to send all reply

messages to a fixed channel. This means that the reply channel can contain messages related to
different customers' concurrent quote requests. Therefore, we need to equip each message with a
Correlation Identifier to identify which customer request the bank is responding to.

Three Implementations

In order to implement the loan broker example, we have three main design decisions to make: we
have to select a sequencing scheme for the requests , we have to select and addressing scheme for
the banks and we have to define an aggregation strategy. In addition we have to select a
programming language and a messaging infrastructure. In aggregate, these individual options
result in a large number of potential implementation choices. We chose to implement three
representative solutions to highlight the main trade-offs between the different implementation
options. As with all examples in this book, the choice of specific technologies is somewhat
arbitrary and does not indicate the superiority of a specific vendor's technology. The following
table highlights the characteristics of each solution:

Implementation Sequencing Addressing Aggregation Channel Type Product / Technology

A Synchronous Distribution Channel Web Service / SOAP Java / Apache Axis

B Asynchronous Distribution Correlation ID Message Queue C# / Microsoft MSMQ

C Asynchronous Auction Correlation ID Pub-Sub TIBCO ActiveEnterprise

The first implementation uses synchronous Web Services, implemented in Java and Apache Axis.
The communication with each bank occurs over a separate HTTP channel which serves both as a
request and reply channel. Therefore, the aggregation strategy is based on individual reply
channels and does not require correlation. The second implementation uses an asynchronous
approach with message queues. We implement it using Microsoft's MSMQ, but an
implementation using JMS Queues or IBM WebSphere MQ could look very similar. The last
implementation uses an Auction approach and leverages TIBCO's pub-sub infrastructure and the
TIB/Integration Manager Process Manager tool. In option B and C, all reply messages arrive on a
single channel and the implementations use Correlation Identifiers to associate reply messages to
customer loan quote inquiries.

Synchronous Implementation using Web Services

By Conrad F. D'Cruz)

This section describes the implementation of the loan broker example using Java and XML Web
Services. We use the open-source Apache AXIS toolkit to take care of the Web Services mechanics
for us. We do not want this to be an exercise in Java development and chose this tool to abstract
the complexity of designing and implementing a synchronous Web Service. The discussion in
this section focuses on the design decisions that we make in designing a synchronous messaging
solution.

Solution Architecture

Web Services Solution Architecture

The figure above shows the overall architecture of the synchronous predictive web service
example. There are seven significant interfaces between the loan broker and the rest of the
solution. As indicated, SOAP over HTTP is used to communicate between each pair of
participants.

The first interface is the entry point in to the loan broker that the client application uses to pass in
the message containing the loan application information. The client receives the results of the
query back from the loan broker via the same interface. Although the Axis server is not shown in
this diagram it receives the Message from the client and implements the Service Activator.

The second interface is between the loan broker and the credit agency. The credit agency is an
external bureau and provides a Web service interface for the loan broker to acquire additional
customer data that is required by the banks. The loan broker enriches the incoming request with
the data from the credit agency, implementing a Content Enricher.

The next five interfaces are between the loan broker and each of the five banks. These interfaces
are used to obtain the rate quote for a loan from that particular bank. Each bank interface
provides the same functionality (obtain a quote) but may specify a different format for the
associated SOAP messages. Therefore, the loan broker has to translate the quote request message
to the format required by each particular bank before querying the bank.

The loan broker contacts each bank directly using predictive routing i.e., the set of banks that
participate in the quote gathering is known right before they are called for a quote. In this stage
the loan broker application sends the request to the selected banks using the Recipient List pattern.
Because each bank can use a different format for the request, the loan broker needs to use an
array of Message Translators to convert the request into the format required by each bank.

Likewise, each reply message has to be converted to a common format using a Normalizer, so that
all replies can be aggregated into the single best quote. The request and response messages are
passed synchronously, i.e., the client and loan broker is blocked until each Bank responds or
times out. The loan broker aggregates all responses into the single best quote and sends the best
quote reply back to the client.

Synchronous messaging is useful in some problem domains where a simple solution is
necessitated. By using synchronous messaging we do not have to worry about handling
asynchronous events, thread safety or the infrastructure needed to support them. The client
invokes the loan broker web service and then waits for the response from the server. Based on the
general description of the overall example the first component of the server application is the
loan broker whose endpoint is exposed as the web service. There are several components in this
solution and each component makes a synchronous call to the next component and waits for the
response.

Web Services Design Considerations

XML Web services rely on the Simple Object Access Protocol (SOAP). The SOAP specification
was submitted to the W3C and defines an XML based protocol for the purpose of exchanging
messages between decentralized and distributed systems. For more details on SOAP please refer
to the documents at the World Wide Web Consortium web site (www.w3.org/TR/SOAP).

Unfortunately, the "S" in "SOAP" is no longer valid. Actually, we have jokingly postulated that
SOAP be renamed to Complex Remote Access Protocol -- you figure out the acronym... Seriously,
designing a robust Web services interface requires us to dive into a a number of terminologies
and associated design trade-offs. While this book is not an introduction into Web Services, we
feel it is important to briefly discuss the following design considerations:

• Transport protocol
• Asynchronous messaging versus Synchronous messaging
• Encoding style (SOAP Encoding vs. doc/literal)
• Binding style (RPC vs. Document-style)
• Reliability and Security

Transport Protocol

The SOAP specification was created to allow applications to make synchronous RPC-style calls to
a service across the network in a technology-neutral way. The SOAP specification actually
defines a separate request and response message for each invocation to a Web Service (as defined
in the WSDL document describing the service). Even though SOAP was developed with
messaging in mind, the vast majority of the Web Service applications use HTTP as the transport
protocol. HTTP is a natural choice because it is the most commonly used protocol on the Web
and can sneak through firewalls. However, the HTTP protocol is the "Hyper Text Transfer
Protocol" -- it was designed to allow users with Web browsers to retrieve documents over the

Internet, not for applications to communicate with each other. The HTTP protocol is inherently
unreliable and designed for synchronous document retrieval -- the client application uses the
same connection for sending the request to the server and receiving the response. Therefore, Web
Services that use the HTTP protocol will invariably use synchronous request/response
messaging because asynchronous messaging over an unreliable channel is about as useful as
dropping a bottle into the ocean.

Asynchronous vs. Synchronous

In a synchronous implementation of a Web Service, the client connection remains open from the
time the request is submitted to the server. The client will wait until the server sends back the
response message. The advantage of using the synchronous RPC communication is that the client
application knows the status of the Web Service operation in a very short time (either it receives a
response or it times out). A serious limitation of using synchronous messaging is that the server
may have to deal with a large number of concurrent connections because each concurrent client
maintains an open to connection while waiting for the results. This causes the server application
to become increasingly complex. If one of the invocations to a synchronous service provider fails,
the server application has to provide the mechanism to trap the failure and recover and re-route
the processing or flag an error before continuing with the other synchronous invocations.

At the present time, most Web Services toolkits only support synchronous messaging by default.
However, using existing standards and tools such as asynchronous message queuing frameworks,
some vendors have emulated asynchronous messaging for Web Services. Several organizations,
companies and the Web Services working groups have recognized the need to have
asynchronous messaging support and have been moving towards defining standards (e.g.
WS-ReliableMessaging). For the latest on Web Services standards, please refer to the World Wide
Web Consortium web site at http://www.w3.org/ and see the chapter Emerging Standards and
Futures in Enterprise Integration at the end of this book.

Encoding Style

The notion of SOAP encoding has led to a fair amount of debate and confusion. The SOAP
Specification specifies a mode called "encoding Style" specified by the encodingStyle attribute.
This mode can take on two values, "encoded" (by setting the attribute value to
"http://schemas.xmlsoap.org/soap/encoding/") and "literal" (by specifying a different (or no)
attribute value). This mode determines how application objects and parameters are represented
in the XML "on the wire". "Encoded" (also referred to as SOAP Encoding) refers to Section-5 of
the SOAP specification (www.w3.org/TR/SOAP), which defines a primitive mechanism for
mapping programming language types to XML. "Literal" (also called "doc/literal") means don't
do that. Instead, the type information is provided by an external mechanism, more likely than not
a WSDL (Web Services Description Language) document that uses XML schema to define exactly
what types are used in the SOAP message.

The reason this came about is because the SOAP specification was written prior to the adoption
of the XML schema specification (XSD). Thus, the original SOAP specification had to provide a

way of encoding type information along with the parameters being sent for method calls because
there was no accepted way of specifying it. Where this really comes into play is with complex
data types such as Arrays. Section 5.4.2 of the SOAP specification defines a particular mechanism
for representing programming language arrays in XML that uses a special SOAPEnc:Array schema
type.

However, since the adoption of XML Schema (see http://www.w3.org/TR/xmlschema-0/),
most languages have rendered the need for SOAP encoding obsolete by specifying their own
mappings (or serialization rules) from XML schema to the programming language types. For
instance, the JAX-RPC specification uniquely specifies how Java types are mapped to XML
schema elements and vice-versa. This obviates the need for extra encoding information in the
XML. So, as a result, SOAP Encoding is no longer favored, and has been superceded by literal
encoding with the mapping being specified externally by an XML schema document, usually in
the form of a WSDL document.

Binding Style

The WSDL Specification specifies two different "binding styles" in its SOAP binding. The values
of the binding style attribute are "RPC" and "Document". What this means is that if a WSDL
document specifies an operation has a binding style attribute set to "RPC" then the receiver must
interpret that message using the rules found in Section 7 of the SOAP specification. This means,
for instance, that the XML element inside the SOAP body (called a "wrapper element") must have
a name identical to the name of the corresponding programming-language operation that is to be
invoked, that each message part within that element must correspond exactly (in name and order)
to a parameter of that programming-language operation, and that there must be only a single
element returned (which must be named XXXResponse, where XXX is the name of the
corresponding operation in the language) that contains inside it exactly one element, that is the
return value of the operation.

The "Document" binding style is much looser. A message in the document binding style must
simply be made up of well-formed XML. It is up to the SOAP engine that receives it how it will
be interpreted. Now, having said that, it is fairly common (for instance among Microsoft tools) to
use "Document" binding style and "Literal" encoding to represent RPC semantics. Even though a
"Document" style is used, the message being sent represents a Command Message, with the
operation to be invoked and the parameters to be passed encoded in the "Document".

Reliability and Security

In the chapter Emerging Standards and Futures in Enterprise Integration, Sean Neville describes
evolving standards that aim to address the issues of reliability and security for Web Services.

Our solution uses the most basic and probably still most prevalent combination of these design
choices. The loan broker implementation uses SOAP over HTTP with synchronous
communication, encoding messages with the default SOAP encoding style and RPC binding. This
makes the Web service behave very much like a Remote Procedure Invocation. We went this route

so that we do not get stuck debating Web services internals (well, not any more than we already
did) but can focus on contrasting the synchronous Web services implementation with the other
implementations.

Apache Axis

This section provides a brief description of the Axis architecture to help elucidate the significant
points in our design. For additional details on Axis please refer to the Apache Axis web site at
xml.apache.org/axis.

The chapter Root Patterns defines a Message Endpoint as the mechanism an application uses to
connect to a messaging channel in order to send and receive messages. In our loan broker
application, the Axis framework itself represents the message channel and its main function is to
handle the processing of messages on behalf of the user application.

The Axis server implements the Service Activator pattern. In the chapter on Messaging Endpoints,
we described how a Service Activator connects a Message Channel to a synchronous service in an
application so that when a message is received, the service is invoked.

The Message Adapter is implemented within the Axis server so that the developer does not need
to implement this functionality. Therefore the application code contains only business logic for
the application and the Axis server takes care of all message-handling services.

The client-programming model of Axis provides the components for the client application to
invoke an endpoint URL and then receive the response message from the server. The loan broker
client in this application is a synchronous client that uses this client-programming model of Axis.
Within the server there is a listener for each transport protocol supported by the server. When the
client sends a message to the endpoint, a transport listener within the Axis framework creates a
message context object and passes it through a request chain in a framework. The Message
Context contains the actual Message received from the client along with associated properties
added by the transport client.

The Axis framework is made up of a series of Handlers, which are invoked in a particular order
depending on the deployment configuration and whether the client or server is invoking the
framework. Handlers are part of the Message Flow subsystem and are grouped together and
called Chains. Request messages are processed by a sequence of request Handlers in a Chain.
Any response messages are sent back on the corresponding response Chain through a sequence
of response Handlers.

The figure above shows a high level representation of the internals of the Axis framework. A
detailed discussion on the architecture of Axis can be found at http://xml.apache.org/axis.

Axis consists of several subsystems that work together to provide the functionality of a Message
Channel. This framework is available for use by both the client and server application.

The relevant Axis subsystems for our example are as follows:

• Message Model subsystem defines the XML syntax of the SOAP messages.
• Message Flow subsystem defines Handlers and Chains to pass the messages
• Service subsystem defines the service handler (SOAP, XML-RPC)
• Transport subsystem provides alternatives for the transport of messages (for e.g., HTTP,

JMS, SMTP)
• Provider subsystem defines the providers for different types of classes (for e.g., java:RPC,

EJB, MDB)

As mentioned earlier, the developer only needs to focus on creating an application that
implements the business logic, which can then be deployed in the Axis server. There are three
techniques for deploying a java class as a Web service and being made available as an endpoint
service and we have named them as follows.

• Automatic Deployment
• Using a Web Services Deployment Descriptor
• Generate proxies from an existing WSDL document

The first and simplest way is to write the class containing the business logic as a Java Web Service
file (this is a Java source file with a *.jws extension). The methods of this class contain the
business logic. The JWS file does not need to be compiled and can be instantly deployed by
copying the source file into the webapps directory on the server. Each public method is now
accessible as a Web service. The name of this JWS file forms part of the endpoint that the Axis
server exposes as a Web service as shown below:

http://hostname:portnumber/axis/LoanBroker.jws

Axis 1.1 automatically generates the WSDL (Web Services Description Language - see
http://www.w3.org/TR/wsdl.) document from services deployed within the server. WSDL is an
XML format that describes the public interface of a Web service (i.e. the methods available
through the interface) as well as the location of the service (i.e. the URL). The automatic
generation of WSDL allows other applications to inspect the remote interface provided by the
Web service class. It can also be used to automatically generate client stub classes that
encapsulate the Web services call inside a regular Java class. The disadvantage of this method is
the developer cannot control the deployment parameters.

The second technique deploys a compiled class using a WSDD (Web Services Deployment
Descriptor), which allows the developer to control the deployment parameters, e.g. the class
scope. By default, a class gets deployed in the request scope i.e., a new instance of the class is
instantiated for each request that is received. Once the processing is finished the instance is
destroyed. If the class has to persist for the entire session to service multiple requests from the
same client over a period of time, we need to define the class in the session scope. For some
applications, we need all clients to access a singleton class, i.e., the class has to be instantiated and
made available for the entire duration the application is active, in which case the web service is
defined in the application scope.

The last technique is more complicated than the previous two techniques but allows the
generation of proxies and skeletons from an existing WSDL document (using the wsdl2java tool).
The proxies and skeletons encapsulate all SOAP-related code so that the developer does not have
to write any SOAP (or Axis)-related code, but can instead insert the business logic right into in
the method bodies of the generated skeleton.

We choose to implement all our Web services using the Automatic Deployment technique using
JWS files, in order to keep the design and deployment requirements as simple as possible. On the
client side it is a lot easier to hand code the call to the Web Service. We could have used
wsdl2java to generate the stubs, which would then be called by the client code, however we tried
to minimize the amount of code generation because it can make it difficult to walk through an
example solution.

Service Discovery

Before we proceed with a discussion of the loan broker application, we need to describe a few
general steps that we follow when implementing the solution to help in creating an application
that is easy to deploy. In order to invoke a Web service that is deployed on a server, any client
application needs to know the endpoint URL. In the Web services model, an application would
look up the location of a web service they need to access from a common service registry.

UDDI (Universal Description, Discovery and Integration) is a standard for such a repository. A
discussion of UDDI is beyond the scope of this section and you can get additional information at

www.uddi.org. In our example we hard code the endpoint URLs in the application itself.
However, to make it easy to deploy the example code, we create properties files for both the
server and client applications. The properties file has name value pairs for the hostname and port
number parameters, which match the parameters of your Axis server installation. This gives you
some flexibility in deploying the loan broker application in your environment. We provide a
utility method readProps() in some of the Java classes. This method is for reading files that
contain the deployment parameters of the Axis server. The readProps() method is not used by
any of the functional aspects of the loan broker application.

In any distributed computing framework whether it is Java RMI, CORBA or SOAP Web services,
we need to define parameters of the method calls on remote objects as primitive data types or
objects that can be serialized to and from the network. These parameters are the properties of the
message objects that are sent from the client to the server. To keep the loan broker solution
simple we use a java String object to return the response from the loan broker to the client. If the
calling parameters are primitive data types (e.g. int, double, etc.) they have to be wrapped in the
predefined object wrappers called the type wrappers (for e.g., Integer, Double, etc.).

The Loan Broker Application

The figure below shows the class diagram for the loan broker component. The core business logic
for the loan broker is encapsulated inside the LoanBrokerWS class. This class inherits from a class
provided by the Axis framework that implements a Service Activator to invoke a method in the
LoanBrokerWS class when a SOAP request arrives. The LoanBrokerWS references a set of gateway
classes that implement details of interfacing with external entities, such as the credit agency and
the banks. This logic is encapsulated inside the classes CreditAgencyGateway, LenderGateway,
BankQuoteGateway.

Loan Broker Class Diagram

The only service interface from the loan broker to the outside world is the message endpoint for
the client to access the loan broker service. There is no need to define a Messaging Gateway since
the Axis framework acts as the gateway on behalf of the application.

The following sequence diagram illustrates the interaction between the components for the
synchronous predictive Web service example. The loan broker first calls the credit agency
gateway component, which enriches the minimum data provided with a credit score and the
length of credit history for the customer. The loan broker uses the enriched data to call the lender
gateway. This component implements the Recipient List that uses all the data provided to choose
the set of lenders that can service the loan request.

The loan broker then calls the bank quote gateway. This component performs the predictive
routing operation by calling each bank in turn. The bank components model the interface to a
real-world banking operation. For example the Bank1 class is the interface to the Bank1WS.jws
Web Service that models the banking operation. When a loan request comes in, there is some
amount of clerical work performed before generating the rate quote based on all the parameters.
In this example, the rate quote is generated by a banking Web service.

The bank quote gateway aggregates the responses from the banks and chooses the best quote
from all the quotes received. The response is sent back to the loan broker, which formats the data
from the best quote and returns the report to the client.

Loan Broker Sequence Diagram

We have only shown two of the five banks in the sequence diagram in the interest of keeping the
picture manageable. Based on the Recipient List generated for a particular request, the loan broker
could contact exactly one bank or all five banks to service the client request.

The diagram highlights the sequential processing of the quote requests to each bank. The
sequential processing has some advantages because we can run the application in a single thread
calling each bank in turn. The application does not need to spawn threads to request a quote from
each bank and so we don’t have to worry about concurrency issues. However, the total time to
get the response quote is high since the loan broker has to wait for a response from each bank
before submitting a request to the next bank in the lenders list. The net result is the customer will
have to wait a long time to get the result quote back after submitting the request.

Components of the Loan Broker Application

We will now start designing the functional aspects of the loan broker application. As stated
earlier the Axis framework can support both the client and server application. This allows a
remote client to access the published endpoint across the network. A server application may also
need to act like a client and access some other Web service endpoint, regardless of whether that
endpoint is on the same server or a remote server. We are going to demonstrate this by modeling
the key components of our solution as Web services albeit running on the same instance of our
server.

The loan broker solution has to implement the following functions. The following sections
discuss the implementation of each function.

• Accept Client Requests
• Retrieve Credit Agency Data
• Implement the Credit Agency Service
• Obtain Quotes
• Implement the Banking Operations

Accepting Client Requests

The loan broker is implemented in a JWS file named LoanBrokerWS.jws. It exposes a single
public method as a Web service: GetLoanQuote. The loan broker needs three pieces of data from
the client to start processing a loan request: the social security number (SSN) that acts as the
customer identification number, the amount of the loan and the duration of the loan in months:

 public String getLoanQuote(int ssn, double loanamount, int loanduration) {

 String results = "";

 results = results + "Client with ssn= " + ssn + " requests a loan of amount= " + loanamount

+ " for " + loanduration + " months" + "\n\n";

 results = results + this.getLoanQuotesWithScores(ssn,loanamount,loanduration);

 return results;

 }

The only step in this method is the call to the method getLoanQuotesWithScores. This method
returns a string, which is sent back to the client along a response chain in the Axis framework. At
the end of the chain, the transport listener that received the request will accept the response
message from within the Axis framework and send it back to the client on the network.

As described earlier, since we use the Automatic Deployment of the JWS file for the loan broker
component, Axis generates the WSDL file for the LoanBrokerWS service. The WSDL file for the
LoanBrokerWS.jws file is shown below.

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <wsdl:message name="getLoanQuoteRequest">

 <wsdl:part name="ssn" type="xsd:int"/>

 <wsdl:part name="loanamount" type="xsd:double"/>

 <wsdl:part name="loanduration" type="xsd:int"/>

 </wsdl:message>

 <wsdl:message name="getLoanQuoteResponse">

 <wsdl:part name="getLoanQuoteReturn" type="xsd:string"/>

 </wsdl:message>

 <wsdl:portType name="LoanBrokerWS">

 <wsdl:operation name="getLoanQuote" parameterOrder="ssn loanamount

loanduration">

 <wsdl:input message="intf:getLoanQuoteRequest" name="getLoanQuoteRequest"/>

 <wsdl:output message="intf:getLoanQuoteResponse"

name="getLoanQuoteResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="LoanBrokerWSSoapBinding" type="intf:LoanBrokerWS">

 <wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="getLoanQuote">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getLoanQuoteRequest">

 <wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="..."

use="encoded"/>

 </wsdl:input>

 <wsdl:output name="getLoanQuoteResponse">

 <wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="..."

use="encoded"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="LoanBrokerWSService">

 <wsdl:port binding="intf:LoanBrokerWSSoapBinding" name="LoanBrokerWS">

 <wsdlsoap:address

location="http://192.168.1.25:8080/axis/LoanBrokerWS.jws"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

In the interest of space we condensed the WSDL document to highlight the most significant
elements. The <wsdl:service> tags define the service name (LoanBrokerWSService) and the
endpoint location. The <wsdl:operation> tags define the method (operation) name along with the
parameters required for the client to access the LoanBrokerWS Web Service. The two messages
defined in the <wsdl:message> tags define the request and the response messages for the
getLoanQuote operation: getLoanQuoteRequest and getLoanQuoteResponse with the appropriate
parameters they pass in to or receive from the Web Service. The <wsdlsoap:binding> element
confirms that we are using the RPC binding style that we discussed at the beginning of this
chapter while the <wsdlsoap:body> reveals that we are using SOAP encoding (as opposed to
doc/literal).

If you want to see the WSDL file from your server, you can type in the following URL in your
browser window where hostname and portnumber are replaced with the appropriate values of
your server installation,

http://hostname:portnumber/axis/LoanBrokerWS.jws?wsdl

Retrieving Credit Agency Data

Another requirement for the loan broker is to gather additional data on the customer to complete
the loan request application. The next stage of the LoanBrokerWS, implements the Content
Enricher as shown below:

 private String getLoanQuotesWithScores(int de_ssn, double de_loanamount, int

de_duration) {

 String qws_results="Additional data for customer: credit score and length of credit

history\n";

 int ssn = de_ssn;

 double loanamount = de_loanamount;

 int loanduration = de_duration;

 int credit_score = 0;

 int credit_history_length = 0;

 CreditProfile creditprofile = CreditAgencyGateway.getCustomerCreditProfile(ssn);

 credit_score = creditprofile.getCreditScore();

 credit_history_length = creditprofile.getCreditHistoryLength();

 qws_results = qws_results + "Credit Score= " + credit_score + " Credit History Length=

" + credit_history_length;

 qws_results = qws_results + "\n\n";

 qws_results = qws_results + "The details of the best quote from all banks that responded

are shown below: \n\n";

 qws_results = qws_results +

getResultsFromLoanClearingHouse(ssn,loanamount,loanduration,credit_history_length,c

redit_score);

 qws_results = qws_results + "\n\n";

 return qws_results;

 }

We now design the credit agency operations, which is the next logical area of the loan broker
application. In order to keep the SOAP code out of the loan broker application, and minimize the
dependencies between the loan broker and the credit agency we will use the Gateway pattern. In
Martin’s P of EAA book, using an example created by Mike Rettig, Martin highlighted two key
advantages of using the Gateway pattern. First, it abstracts the technical details of the
communication from the application. Second, if we choose to separate the gateway interface from
the gateway implementation we can replace the actual external service with a Service Stub [EAA]
for testing.

Our CreditAgencyGateway abstracts the technical details of the communication between the
CreditAgencyGateway and the credit agency Web Service (CreditAgencyWS). We could replace
the Web service with a test stub if needed. The gateway takes in the customer identification
number (ssn) and acquires additional data from the credit agency. The two pieces of data
returned by the credit agency are the credit score and the length of credit history for the customer
both of which are needed to complete the loan application. This gateway will contain all the
client side code to access the CreditAgencyWS implemented in the CreditAgencyWS.jws file.

 public static CreditProfile getCustomerCreditProfile(int ssn){

 int credit_score = 0;

 int credit_history_length = 0;

 CreditProfile creditprofile = null;

 try{

 CreditAgencyGateway.readProps();

 creditprofile = new CreditProfile();

 String creditagency_ep = "http://" + hostname + ":" + portnum +

"/axis/CreditAgencyWS.jws";

 Integer i1 = new Integer(ssn);

 Service service = new Service();

 Call call = (Call) service.createCall();

 call.setTargetEndpointAddress(new java.net.URL(creditagency_ep));

 call.setOperationName("getCreditHistoryLength");

 call.addParameter("op1", XMLType.XSD_INT, ParameterMode.IN);

 call.setReturnType(XMLType.XSD_INT);

 Integer ret1 = (Integer) call.invoke(new Object [] {i1});

 credit_history_length = ret1.intValue();

 call.setOperationName("getCreditScore");

 Integer ret2 = (Integer) call.invoke(new Object [] {i1});

 credit_score = ret2.intValue();

 creditprofile.setCreditScore(credit_score);

 creditprofile.setCreditHistoryLength(credit_history_length);

 Thread.sleep(credit_score);

 }catch(Exception ex){

 System.out.println("Error accessing the CreditAgency Webservice");

 }

 return creditprofile;

 }

}

The purpose of using this Gateway is to show how a server application uses the Axis client
framework to access a Web service, either on the same server or a remote server.

Implementing the Credit Agency Service

The credit agency Web service is coded in CreditAgencyWS.jws and shown below. . The two
significant pieces of data needed to complete the loan application are the customer credit score
and the length of the customer’s credit history. The credit agency has this data for each customer
with a credit history and can be accessed using the customer identification number.

 public int getCreditScore(int de_ssn) throws Exception

 {

 int credit_score;

 credit_score = (int)(Math.random()*600+300);

 return credit_score;

 }

 public int getCreditHistoryLength(int de_ssn) throws Exception

 {

 int credit_history_length;

 credit_history_length = (int)(Math.random()*19+1);

 return credit_history_length;

 }

The code below shows the WSDL file for the CreditAgencyWS.jws file. This file was automatically
generated by the Axis server.

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/">

 <wsdl:message name="getCreditScoreResponse">

 <wsdl:part name="getCreditScoreReturn" type="xsd:int"/>

 </wsdl:message>

 <wsdl:message name="getCreditHistoryLengthRequest">

 <wsdl:part name="de_ssn" type="xsd:int"/>

 </wsdl:message>

 <wsdl:message name="getCreditScoreRequest">

 <wsdl:part name="de_ssn" type="xsd:int"/>

 </wsdl:message>

 <wsdl:message name="getCreditHistoryLengthResponse">

 <wsdl:part name="getCreditHistoryLengthReturn" type="xsd:int"/>

 </wsdl:message>

 <wsdl:portType name="CreditAgencyWS">

 <wsdl:operation name="getCreditHistoryLength" parameterOrder="de_ssn">

 <wsdl:input message="intf:getCreditHistoryLengthRequest"

name="getCreditHistoryLengthRequest"/>

 <wsdl:output message="intf:getCreditHistoryLengthResponse"

name="getCreditHistoryLengthResponse"/>

 </wsdl:operation>

 <wsdl:operation name="getCreditScore" parameterOrder="de_ssn">

 <wsdl:input message="intf:getCreditScoreRequest"

name="getCreditScoreRequest"/>

 <wsdl:output message="intf:getCreditScoreResponse"

name="getCreditScoreResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="CreditAgencyWSSoapBinding" type="intf:CreditAgencyWS">

 ...

 </wsdl:binding>

 <wsdl:service name="CreditAgencyWSService">

 <wsdl:port binding="intf:CreditAgencyWSSoapBinding" name="CreditAgencyWS">

 <wsdlsoap:address

location="http://192.168.1.25:8080/axis/CreditAgencyWS.jws"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

The <wsdl:service> defines the CreditAgencyWSService and exposes the endpoint that will be
accessed by the client in this case the loan broker. The <wsdl:operation> defines the two public
methods defined in the CreditAgencyWS.jws file, getCreditScore and getCreditHistoryLength.
For each of these methods, there will be a request-response message pair defined as can be seen
in the <wsdl:message> tags. These are listed here, getCreditScoreRequest,
getCreditScoreResponse, getCreditHistoryLengthRequest, getCreditHistoryLengthResponse.

Once again, in the interest of space we have collapsed most of the elements of the WSDL file to fit
the format of the section. If you are interested in seeing the entire file, it can be accessed on your
server using the following URL where hostname and portnumber are the values for your server
installation,

http://hostname:portnumber/axis/CreditAgencyWS.jws?wsdl

The credit agency webservice in our example stubs out the implementation and returns dummy
data that can be used by other parts of the application.

Obtaining Quotes

Having enriched the customer data, the loan broker now calls the loan clearing house function,
which is part of the loan broker itself. As seen in the call below, the loan-clearing house receives
all the data for the loan application.

getResultsFromLoanClearingHouse(ssn,loanamount,loanduration,credit_history_length,c

redit_score);

The loan clearing house functions could be further demarcated into its own logical unit if the
application gets more complex or the loan broker requirements change to use an external
loan-clearing house. In our example the loan clearing house functionality can be broken down
into three steps, namely:

• Get a list of lenders who can service the customer loan

• Get the best quote out of all quotes from each bank in the lender list

• Format the data from the best quote and return it to the loan broker

The code shows these steps:

private String getResultsFromLoanClearingHouse(int ssn, double loanamount, int

loanduration, int credit_history_length, int credit_score) {

 String lch_results="Results from Loan Clearing House ";

 ArrayList lenderlist = LenderGateway.getLenderList(loanamount,

credit_history_length, credit_score);

 BankQuote bestquote =

BankQuoteGateway.getBestQuote(lenderlist,ssn,loanamount,loanduration,credit_history

_length,credit_score);

 lch_results = "Out of a total of " + lenderlist.size() + " quote(s), the best quote

is from" + this.getLoanQuotesReport(bestquote);

 return lch_results;

}

The first requirement for the loan-clearing house is to get a list of suitable lenders that can service
the customer loan application. In order to abstract the functions of the lender selection process
from the loan broker we will create a LenderGateway class. We could make the solution more
interesting by making this a Web Service. However, Web Services should be designed carefully
and the parameters and return types should be taken into consideration since these have to be
types that can be serialized to and from the network.

For this example, we could have chosen to return a collection of the service endpoint for the
banks from a LenderGateway. The drawback of doing this is the identification of the bank
webservice will have to be hard coded in the lender gateway. This becomes a maintenance
nightmare in real life, especially since banks get bought, sold or merged more often than IT
architects change jobs. We will discuss a robust solution for the bank and its webservice in the
discussion of the BankQuoteGateway topic later in this section.

The method getLenderList shown below will return the set of lenders (i.e. banks) that can service
the loan request.

 public static ArrayList getLenderList(double loanamount, int credit_history_length, int

credit_score){

 ArrayList lenders = new ArrayList();

 LenderGateway.readProps();

 if ((loanamount >= (double)75000) && (credit_score >= 600) && (credit_history_length

>= 8))

 {

 lenders.add(new Bank1(hostname, portnum));

 lenders.add(new Bank2(hostname, portnum));

 }

 if (((loanamount >= (double)10000) && (loanamount <= (double)74999)) && (credit_score

>= 400) && (credit_history_length >= 3))

 {

 lenders.add(new Bank3(hostname, portnum));

 lenders.add(new Bank4(hostname, portnum));

 }

 lenders.add(new Bank5(hostname, portnum));

 return lenders;

 }

This method implements the RecipientList pattern. In our example the rule base consists of very
simple if statements that choose a bank or banks based on a set of predefined conditions. We
have also set a default selection for every customer request so that every customer request will
have at least one quote.

The loan broker will now pass the list of lenders to the bank quote gateway to start gathering
quotes and make a selection. Once again we create a class named BankQuoteGateway to abstract
the internal functioning of the bank quote gateway. The loan broker will only need to request the
best quote from the BankQuoteGateway as seen in the method call below:

BankQuote bestquote =

BankQuoteGateway.getBestQuote(lenderlist,ssn,loanamount,loanduration,credit_history

_length,credit_score);

The BankQuoteGateway responds to the loan broker request by getting the quotes from all the
banks and then selecting the best quote (i.e., the quote with the lowest rate). The getBestQuote
method is shown below:

 public static BankQuote getBestQuote(ArrayList lenders, int ssn, double loanamount,

int loanduration, int credit_history_length, int credit_score){

 BankQuote lowestquote = null;

 BankQuote currentquote = null;

 ArrayList bankquotes =

BankQuoteGateway.getBankQuotes(lenders,ssn,loanamount,loanduration,credit_history_l

ength,credit_score);

 Iterator allquotes = bankquotes.iterator();

 while (allquotes.hasNext()){

 if (lowestquote == null){

 lowestquote = (BankQuote)allquotes.next();

 }

 else{

 currentquote = (BankQuote)allquotes.next();

 if (currentquote.getInterestRate() < lowestquote.getInterestRate()){

 lowestquote = currentquote;

 }

 }

 }

 return lowestquote;

 }

The most significant line in the code above is the call to getBankQuotes. This method not only
performs the controlled Auction but also implements the Aggregator pattern. The listing below
shows the getBankQuotes method:

 public static ArrayList getBankQuotes(ArrayList lenders, int ssn, double loanamount,

int loanduration, int credit_history_length, int credit_score) {

 ArrayList bankquotes = new ArrayList();

 BankQuote bankquote = null;

 Bank bank = null;

 Iterator banklist = lenders.iterator();

 while (banklist.hasNext()){

 bank = (Bank)banklist.next();

 bankquote =

bank.getBankQuote(ssn,loanamount,loanduration,credit_history_length,credit_score);

 bankquotes.add(bankquote);

 }

 return bankquotes;

 }

The while loop performs the function of the controlled Auction. Each bank is extracted from the
lender list and the method to generate a bank quote is invoked as highlighted below. Pay special
attention to the order of the parameter list in the call to the method and we will explain the
significance when we start designing the banks and the associated webservices.

bank.getBankQuote(ssn, loanamount,loanduration, credit_history_length, credit_score);

The response is aggregated using the bankquotes ArrayList. The getBestQuote method iterates
over this collection of bank quotes and selects the lowest quote, which is sent back to the loan
broker.

As mentioned earlier, we will design the bank and bank webservice to emulate a real-world bank
operation and keep the functions of the bank separate and not couple them tightly with the
functions of the loan broker. This will let our bank classes have the advantages of using the
Gateway pattern described earlier in the CreditAgencyGateway class.

We define an abstract Bank class as follows:

public abstract class Bank{

 String bankname;

 String endpoint = "";

 double prime_rate;

 public Bank(String hostname, String portnum){

 this.bankname = "";

 this.prime_rate = 3.5;

 }

 public void setEndPoint(String endpt){this.endpoint = endpt;}

 public String getBankName(){return this.bankname;}

 public String getEndPoint(){return this.endpoint;}

 public double getPrimeRate(){return this.prime_rate;}

 public abstract BankQuote getBankQuote(int ssn, double loanamount, int loanduration,

int credit_history_length, int credit_score);

 public void arbitraryWait(){

 try{

 Thread.sleep((int)(Math.random()*10)*100);

 }catch(java.lang.InterruptedException intex){

 intex.printStackTrace();

 }

 }

}

In our example, the process for getting a quote from a bank is modeled roughly along the same
lines a real world bank operates. First there is a small amount of clerical work done followed by
an access to the computerized rate quote system and then some additional amount of clerical
work before the quote is returned to the BankQuoteGateway.

The Bank abstract class and the child bank classes (Bank1 to Bank5) model the operation of a
regular bank. In our example, the bank receives the loan request and the clerical staff conducts
the due diligence research while verifying that the customer information is accurate. We have
chosen to model the clerical work as an arbitrary wait method implemented in the Bank abstract
class as shown above and invoked in the getBankQuote method. To make things interesting, we
will model the bank’s rate quote system for getting rate quotes, using webservices. For a given
bank (Bankn) the rate quote system is modeled using a BanknWS and coded in a file named
BanknWS.jws. There will be five bank classes (Bank1 to Bank5) and five rate quote systems
(Bank1WS to Bank5WS). To make things even more interesting each of the rate quote systems
will use a different format for the parameter list in the method call. This means the Bank class has
to use a Translator to translate the format of the message before calling the webservice. We will
show this after discussing the Bank classes.

You will note that the getBankQuote method in the abstract Bank class is an abstract method and
has the parameters ordered in a particular format. We will now look at one of the bank
implementations and for no particular reason choose Bank1. The class structure of all the banks
will be identical and each will differ only in the values of its fields (the bank name and endpoint
address) which are set when the bank object is constructed.

public class Bank1 extends Bank {

 public Bank1(String hostname, String portnum){

 super(hostname,portnum);

 bankname = "Exclusive Country Club Bankers\n";

 String ep1 = "http://" + hostname + ":" + portnum + "/axis/Bank1WS.jws";

 this.setEndPoint(ep1);

 }

 public void setEndPoint(String endpt){this.endpoint = endpt;}

 public String getBankName(){return this.bankname;}

 public String getEndPoint(){return this.endpoint;}

 public BankQuote getBankQuote(int ssn, double loanamount, int loanduration, int

credit_history_length, int credit_score) {

 BankQuote bankquote = new BankQuote();

 Integer i1 = new Integer(ssn);

 Double i2 = new Double(prime_rate);

 Double i3 = new Double(loanamount);

 Integer i4 = new Integer(loanduration);

 Integer i5 = new Integer(credit_history_length);

 Integer i6 = new Integer(credit_score);

 try{

 Service service = new Service();

 Call call = (Call) service.createCall();

 call.setTargetEndpointAddress(new java.net.URL(endpoint));

 call.setOperationName("getQuote");

 call.addParameter("op1", XMLType.XSD_INT, ParameterMode.IN);

 call.addParameter("op2", XMLType.XSD_DOUBLE, ParameterMode.IN);

 call.addParameter("op3", XMLType.XSD_DOUBLE, ParameterMode.IN);

 call.addParameter("op4", XMLType.XSD_INT, ParameterMode.IN);

 call.addParameter("op5", XMLType.XSD_INT, ParameterMode.IN);

 call.addParameter("op6", XMLType.XSD_INT, ParameterMode.IN);

 call.setReturnType(XMLType.XSD_DOUBLE);

 Double interestrate = (Double) call.invoke(new Object [] {i1,i2,i3,i4,i5,i6});

 bankquote.setBankName(bankname);

 bankquote.setInterestRate(interestrate.doubleValue());

 }catch(Exception ex){

 System.err.println("Error accessing the axis webservice from " + bankname);

 BankQuote badbq = new BankQuote();

 badbq.setBankName("ERROR in WS");

 return badbq;

 }

 arbitraryWait();

 return bankquote;

 }

}

As seen in the code above, the getBankQuote method is implemented and has the parameters in a
particular order.

public BankQuote getBankQuote(int ssn, double loanamount, int loanduration, int

credit_history_length, int credit_score)

Implementing the Banking Operations

As described earlier, the format for the parameters of the rate quote system for each bank is
different. This means the getBankQuote method of the Bank class implements the Translator
pattern and has to translate the order of the parameters before calling the respective webservice.
The details of the method signature for each bank webservice getQuote method is shown below:

Bank1WS:

getQuote(int ssn, double prime_rate, double loanamount, int loanduration, int

credit_history_length, int credit_score)

Bank2WS:

getQuote(double prime_rate, double loanamount, int loanduration, int

credit_history_length, int credit_score, int ssn)

Bank3WS:

getQuote(double loanamount, int loanduration, int credit_history_length, int

credit_score, int ssn, double prime_rate)

Bank4WS:

getQuote(int loanduration, int credit_history_length, int credit_score, int ssn, double

prime_rate, double loanamount)

Bank5WS:

getQuote(int credit_history_length, int credit_score, int ssn, double prime_rate, double

loanamount, int loanduration)

The actual implementation of the getQuote method is a placeholder and returns a rate quote
using a simple algorithm as shown below for Bank1WS.jws.

public class Bank1WS {

 public double getQuote(int ssn, double prime_rate, double loanamount, int loanduration,

int credit_history_length, int credit_score)

 {

 double ratepremium = 1.5;

 double int_rate = prime_rate + ratepremium + (double)(loanduration/12)/10 +

(double)(Math.random()*10)/10;

 return int_rate;

 }

}

In a real world application, the formula is a lot more detailed and complicated. The return type of
the getQuote method is a double precision number representing the rate the bank offers the
customer given the parameters in the loan application.

Once again the Axis server automatically generates a WSDL file for each Bank JWS file (exposed
at http://hostname:portnum/axis/Bank1WS.jws?wsdl) . The WSDL files for the other Banks will
have a similar format but will differ in the definition of the parameters. The WSDL file for the
Bank1WS.jws Web Service is shown below.

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/">

 <wsdl:message name="getQuoteRequest">

 <wsdl:part name="ssn" type="xsd:int"/>

 <wsdl:part name="prime_rate" type="xsd:double"/>

 <wsdl:part name="loanamount" type="xsd:double"/>

 <wsdl:part name="loanduration" type="xsd:int"/>

 <wsdl:part name="credit_history_length" type="xsd:int"/>

 <wsdl:part name="credit_score" type="xsd:int"/>

 </wsdl:message>

 <wsdl:message name="getQuoteResponse">

 <wsdl:part name="getQuoteReturn" type="xsd:double"/>

 </wsdl:message>

 <wsdl:portType name="Bank1WS">

 <wsdl:operation name="getQuote" parameterOrder="ssn prime_rate loanamount

loanduration credit_history_length credit_score">

 <wsdl:input message="intf:getQuoteRequest" name="getQuoteRequest"/>

 <wsdl:output message="intf:getQuoteResponse" name="getQuoteResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="Bank1WSSoapBinding" type="intf:Bank1WS">

 ...

 </wsdl:binding>

 <wsdl:service name="Bank1WSService">

 <wsdl:port binding="intf:Bank1WSSoapBinding" name="Bank1WS">

 <wsdlsoap:address location="http://192.168.1.25:8080/axis/Bank1WS.jws"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

As we can see, the WSDL contains one operation getQuote defined in the <wsdl:operation> tag,
which Axis maps to the getQuote method in the Bank1WS.jws class. The <wsdl:service> tag
defines the Web Service Bank1WS Web Service. There is a request-response message pair, each
defined in a <wsdl:message> tag and they are getQuoteRequest and getQuoteResponse.

This rate quote is set in a bank quote bean, which is added to the collection sent back to the
BankQuoteGateway. The bean does not require any formatting and essentially the beans
returned by all the banks look the same. This eliminates the need for a Normalizer to convert the
reply messages to a common format.

The BankQuoteGateway selects the lowest quote from the collection of bank quotes it gets back
and sends one bank quote bean back to the loan broker. The loan broker will access the data in
the bean and format a report to send back to the client application. The method that formats the
report is shown below:

private static String getLoanQuotesReport(BankQuote bestquote){

 String bankname = bestquote.getBankName();

 double bestrate =

((double)((long)(bestquote.getInterestRate()*1000))/(double)1000);

 String results = "\nBank Name: " + bankname + "Interest Rate: " + bestrate;

 return results;

}

Client Application

The client application is the customer's interface to the loan broker application. The main
requirement of the client is to gather information from the customer in a functional graphical user
interface environment with adequate error checking. Beneath the covers and far away from the
eyes of the customer, the client application will prepare the three pieces of data for delivery to the
endpoint of the server application. For simplicity we designed the client application to be a java
class with a main method that takes in the client information as command line arguments. In
reality the user interface could be implemented as a windows based fat client or a browser based
thin client. The client could also be part of another business system that has the
client-programming model deployed. The most significant part of the client application with
respect to invoking the webservice is shown below:

 Service service = new Service();

 Call call = (Call) service.createCall();

 call.setTargetEndpointAddress(new java.net.URL(endpoint));

 call.setOperationName("getLoanQuote");

 call.addParameter("op1", XMLType.XSD_INT, ParameterMode.IN);

 call.addParameter("op2", XMLType.XSD_DOUBLE, ParameterMode.IN);

 call.addParameter("op3", XMLType.XSD_INT, ParameterMode.IN);

 call.setReturnType(XMLType.XSD_STRING);

 String ret = (String) call.invoke(new Object [] {ssn, loanamount, loanduration});

The salient points in the code, are the lines, which define the method name (getLoanQuotes) and
those that set the parameters and return types. The method getLoanQuotes takes in a customer id,
loan amount and loan duration. The return value will be a string.

Since we are not using UDDI, the webservices lookup service, we hard code the endpoint URL
for our webservice. Since we chose to deploy the loan broker application as a JWS file, the
endpoint will have the standard format as defined by the Axis API for java web services (JWS).
The end point for our deployment is shown below, where hostname and portnumber are the
values of your server installation,

http://hostname:portnumber/axis/LoanBroker.jws

The client application which was blocked all along waiting for the response will accept the
formatted report and display it in the GUI area setup for it. Alternatively it can be saved or sent
to a printer.

Running the Solution

Please refer to the sections on installation of Axis and the loan broker application which appears
towards the end of the chapter. The server now needs to be restarted or started if it were not
running. Follow the documentation in the Tomcat help files for the proper steps to start or restart
the server. You can then verify that Tomcat and Apache Axis are up and running by following
the steps that were described in the section Installing XML-Axis at the beginning of this chapter.

Open a shell or command window on the client machine and run the application as shown for
either Unix/Linux or Microsoft Windows:

java -classpath %CLASSPATH% LoanQueryClient [customerid[[loanamount] [loanduration in

months]

or

java -classpath $CLASSPATH LoanQueryClient [customerid] [loanamount] [loanduration in

months]

for e.g.:

java -classpath %CLASSPATH% LoanQueryClient 199 100000.00 29

This invokes the webservice and returns the following results:

Calling the LoanBroker webservice at 1053292919270 ticks

LoanBroker service replied at 1053292925860 ticks

Total time to run the query = 6590 milliseconds

The following reply was received from the Loan Clearing House

Client with ssn= 199 requests a loan of amount= 100000.0 for 29 months

Additional data for customer: credit score and length of credit history

Credit Score= 756 Credit History Length= 12

The details of the best quote from all banks that responded are shown below:

Out of a total of 3 quote(s), the best quote is from

Bank Name: Exclusive Country Club Bankers

Interest Rate: 6.197

You can test out the loan broker by entering different loan amounts when running the client. We
will now analyze the output results with a single client running. Later on we will launch multiple
clients and study the output.

Analyzing the Output

The client application keeps track of the time when it invokes the webservice endpoint on the
server. The client also notes the time when the server responds with the result. Both start and end
times of the call to the webservice are reported in the client application together with the
difference between the two.

Calling the LoanBroker webservice at 1053292919270 ticks

LoanBroker service replied at 1053292925860 ticks

Total time to run the query = 6590 milliseconds

The Loan Clearing House webservice, reports all relevant details of the customer request sent
across the network by the client application.

Client with ssn= 199 requests a loan of amount= 100000.0 for 29 months

The Loan Clearing House also reports additional credit data that was gathered to support the
customer request.

Additional data for customer: credit score and length of credit history

Credit Score= 756 Credit History Length= 12

The LoanBroker analyzes the data and selects a set of banks that fit the customer loan request
criteria. The LoanBroker submits the customer data in the format required for individual banks
and waits for each bank to respond. Since this is a synchronous application, this request is a
blocking wait until a bank responds or the request times out or fails.

The LoanBroker collects all the responses, analyzes the return quotes and chooses the best quote.
This quote is formatted and sent bank to the customer along with any relevant data.

The details of the best quote from all banks that responded are shown below:

Out of a total of 3 quote(s), the best quote is from

Bank Name: Exclusive Country Club Bankers

Interest Rate: 6.197

From the above code segment we see that the LoanBroker reports that three banks responded
and it had select the best quote and presented that to the user.

Performance Limitations

As we discussed in the topic on the sequence diagram earlier on, the total time to get the
response quote is significantly high since the loan broker has to wait for a response from each
bank before submitting to the next bank in the lenders list. The net result is the customer will
have to wait a long time to get the result quote back after submitting the request. We ran several
baseline tests with a single client against the server and obtained an average of the total time to
run the query (8070 milliseconds). We then launched four instances of the client in separate
windows on the same client machine and obtained the following average times:

Client 1: 12520 milliseconds

Client 2: 12580 milliseconds

Client 3: 15710 milliseconds

Client 4: 13760 milliseconds

While these tests could not be consider scientific by any stretch of imagination, the empirical
evidence points to the fact that performance suffers tremendously when multiple clients try to
simultaneously access our loan broker system.

Limitations of This Example

To make the discussion of the design of the loan broker example easier, we chose to implement
all the webservices as JWS files. This gave us the advantage of deploying the service by simply
copying it over to the server. The disadvantage, however, is that the webservice class gets
instantiated when it is invoked and dies as soon as the service is complete. This means that some
amount of the time lag we noticed is a result of the server creating instances of the class before
invoking the service.

We could have chosen the more complicated route and designed a java class file that would get
deployed using a WSDD file. This would give us the flexibility of defining how long the
instantiated class would persist, i.e. for the entire client session or the duration of the application.
The issue of how the webservice will be deployed is very significant when designing a real world
application. If we had chosen to include the deployment issue, the description of the example
would have become very lengthy and the design details would have become unnecessarily
complicated for the purposes of this chapter.

Summary

In this section we stepped through the implementation of the loan broker application using
synchronous access to SOAP/HTTP web services. We used predictive routing to submit our loan
request to a set of banks. We highlighted the strengths and drawbacks of using this approach. We
made some design tradeoffs to manage the discussion and avoid getting bogged down in
describing deployment details. The overall intention was to provide a discussion on the merits
and demerits of this approach. We also got to see many of the patterns described in this book
used which will help in adapting the synchronous predictive approach to other business
domains.

Asynchronous Implementation with MSMQ

This section describes how to implement the Loan Broker example (see Introduction to Composed
Messaging Examples) using Microsoft .NET, C# and MSMQ. The Microsoft .NET framework
includes the System.Messaging namespace that gives .NET programs access to the Microsoft
Message Queuing Service that is included in the recent versions of the Windows operating
system (Windows 2000, Windows XP, Windows Server 2003 etc). The example walks through
many of the design decisions and shows the actual code that is required to make this solution
work. I tried as much as possible to focus on the design aspects of the solution so that this
example is of value even if you are not a hard-core C# developer. In fact, much of the application
besides the actual interface into System.Messaging would look very similar if this implementation
was done in Java and JMS.

Some of the functions demonstrated in this solution could likely be implemented with less effort
by using an integration and orchestration tool such as Microsoft BizTalk Server. I intentionally
avoided using such tools for two reasons. First, these tools are not free and would require you to
acquire a license just to run this simple example. Second, I wanted to demonstrate the explicit
implementation of all necessary functions.

I setup the solution as multiple executables so that the different components could be run
distributed across multiple computers. For purpose of the example I use local, private message to
keep the setup requirements simple and avoid having to install ActiveDirectory. As a result, the
solution 'as is' needs to run on a single machine.

This implementation of the loan broker example uses asynchronous messaging over message
queues. As described in the example overview, this allows us to process multiple quote requests
concurrently, but also requires us to correlate messages as they flow though the system and
ultimately produce a response message to the loan quote request. Many of our design decisions
are driven by the need for asynchronous processing.

Loan Broker Ecosystem

It is a good idea to start understanding the loan broker design from the outside in. Let's start by
examining all external interfaces that the loan broker has to support (see picture). Because
message queues are unidirectional we need a pair of queues to establish a request-response
communication with another component (see .NET Request/Reply Example for a simple case). As a
result, the loan broker receives requests for loan quotes on the loanRequestQueue and replies to
the test client on the loanReplyQueue. The interaction with the credit bureau happens over a
similar pair of queues. I did not want to create a pair of queues for each bank, so I decided to
have all banks reply to the same bankReplyQueue. The Recipient List sends the request message to
each individual bank queue while the Aggregator selects the best quote from the reply messages
arriving on the loanReplyQueue. Together, the Recipient List and the Aggregator act as a
distribution-style Scatter-Gather. For simplicity's sake all banks in this example use the same
message format so that a Normalizer is not required. But because the common bank message
format is different from the format expected by the consumer, we still need to use one Message
Translator to convert bank reply messages into loan broker reply messages. I decided to design
the loan broker as a Process Manager. Rather than implementing the functions inside the loan
broker as individual components separated by message queues, the loan broker is a single
component that executes all functions internally. As a result, this approach eliminates the
overhead that would be incurred by sending messages across queues between these functions,
but requires the loan broker to maintain multiple, concurrent process instances.

Loan Broker with Message Queue Interfaces

Laying the Groundwork: A Messaging Gateway

I do not want this section to become an introduction into the System.Messaging namespace and
MSMQ. Therefore, it makes sense to try to separate some of the MSMQ specific functions into
separate classes so that the application code will not be littered with MSMQ-specific commands.
Mike Rettig reminded me that the Gateway [EAA] is an excellent pattern to use for this. Mike
created the JMS example for Martin's P of EAA book and has been instrumental in bringing the
Messaging Gateway into this implementation. As Martin points out, the use of a Gateway has two
key advantages. First, it abstracts the technical details of the communication from the application.
Second, if we choose to separate the gateway interface from the gateway implementation we can
replace the actual external service with a Service Stub [EAA] for testing.

Use of a Gateway helps keep MSMQ details out of the application and improves testability

In our case we define two interfaces into theMessaging Gateway: IMessageSender and
IMessageReceiver. We kept these interfaces almost trivially simplistic. All the IMessageSender can
do is send a message and all the IMessageReceiver can do is (surprise!) receive a message.
Additionally, the receiver has a Begin method to tell it that it is OK to start receiving messages.
Keeping the interfaces this simple makes it easy to define classes that implement the interface.

IMessageSender.cs

namespace MessageGateway

{

 using System.Messaging;

 public interface IMessageSender

 {

 void Send(Message mess);

 }

}

IMessageReceiver.cs

namespace MessageGateway

{

 using System.Messaging;

 public interface IMessageReceiver

 {

 OnMsgEvent OnMessage

 {

 get;

 set;

 }

 void Begin();

 MessageQueue GetQueue();

 }

}

The actual implementations reside in the MessageSenderGateway and MessageReceiverGateway
classes. These classes take care of configuring the message queue properties such as
MessageReadPropertyFilter or Formatter settings. MessageReceiverGateway uses a Template Method
for the ReceiveCompleted event of the MSMQ message queue to take care of small, but important
details such as calling the mq.BeginReceive method after processing the message. I am not going
to dive into the details of these features right now but refer you to the on-line documentation on
MSDN ([MSMQ01]).

Because we defined very narrow interfaces, it is also possible to provide an implementation that
does not even use a message queue. MockQueue implements both interfaces without even
referencing a message queue! When an application sends a message, MockQueue immediately
triggers the OnMessageevent with that same message. This makes testing the application in a
single address space much simpler without having to worry about the asynchronous aspects
(more on testing below).

The line "OnMsgEvent OnMessage" in IMessageReceiver may require a little bit of explanation for
readers who are new to C#. The .NET Framework provides language features for the Observer
pattern, called delegates and events. OnMsgEvent is a delegate defined in the MessageReceiverGateway:

public delegate void OnMsgEvent(Message msg);

A delegate allows objects to register with a certain type of event. When the event is
invoked, .NET calls all registered methods. A delegate can be invoked in a number of different
ways but the simplest form is the direct invocation by using the name of the delegate:

OnMsgEvent receiver;

Message message;

...

receiver(message);

If this leaves you more interested in delegates have a look at a good .NET or C# book. If you want
to know the dirty details on how the CLR implements them, have a look at [Box].

Base Classes for Common Functionality

When we look at the high-level design, we quickly realize that some of the components in the
loan broker scenario have common functions. For example, both a bank and a credit bureau act as
a service by receiving a request, processing the request and publishing the result to another
channel. Sounds easy enough. But since we live in the world of asynchronous messaging, we
have to do a little extra work to implement a simple request-reply scheme. First, we want the
caller of the service to specify a Return Address for the reply. This allows different callers to use
the same service but use different reply queues. The service should also support a Correlation
Identifier so that the caller can reconcile incoming reply messages with request messages.
Furthermore, if the service receives a message in an unrecognized format it would be good
manners to route the message to an Invalid Message Channel instead of simply discarding it.

To eliminate code duplication (the deadly sin of object-oriented programming), I created the base
class MQService. This class incorporates the support for Return Address and Correlation Identifier.
Really, the server-side support for a Correlation Identifier consists of nothing more than copying
the message ID of the incoming message to the correlation id of the reply message. In our
example, I also copy the AppSpecific property because we will see later that sometimes we need
to correlate by something else besides message ID. The MQService also makes sure to send the
response to the specified Return Address. Because the requestor supplies the Return Address, the
only initialization parameter for the MQService is the name of the request queue, i.e. the queue
where new request messages come in. If the requestor forgets to supply a Return Address, the
RequestReplyService sends the reply to the Invalid Message Channel. One may also consider
sending the request message to the Invalid Message Channel because that's the one that is faulty.
For now, we will keep our lives simple and not get into the details of error handling.

MQService.cs

public abstract class MQService

{

 static protected readonly String InvalidMessageQueueName =

".\\private$\\invalidMessageQueue";

 IMessageSender invalidQueue = new MessageSenderGateway(InvalidMessageQueueName);

 protected IMessageReceiver requestQueue;

 protected Type requestBodyType;

 public MQService(IMessageReceiver receiver)

 {

 requestQueue = receiver;

 Register(requestQueue);

 }

 public MQService(String requestQueueName)

 {

 MessageReceiverGateway q = new MessageReceiverGateway(requestQueueName,

GetFormatter());

 Register(q);

 this.requestQueue = q;

 Console.WriteLine("Processing messages from " + requestQueueName);

 }

 protected virtual IMessageFormatter GetFormatter()

 {

 return new XmlMessageFormatter(new Type[] { GetRequestBodyType() });

 }

 protected abstract Type GetRequestBodyType();

 protected Object GetTypedMessageBody(Message msg)

 {

 try

 {

 if (msg.Body.GetType(). Equals(GetRequestBodyType()))

 {

 return msg.Body;

 }

 else

 {

 Console.WriteLine("Illegal message format.");

 return null;

 }

 }

 catch (Exception e)

 {

 Console.WriteLine("Illegal message format" + e.Message);

 return null;

 }

 }

 public void Register(IMessageReceiver rec)

 {

 OnMsgEvent ev = new OnMsgEvent(OnMessage);

 rec.OnMessage += ev;

 }

 public void Run()

 {

 requestQueue.Begin();

 }

 public void SendReply(Object outObj, Message inMsg)

 {

 Message outMsg = new Message(outObj);

 outMsg.CorrelationId = inMsg.Id;

 outMsg.AppSpecific = inMsg.AppSpecific;

 if (inMsg.ResponseQueue != null)

 {

 IMessageSender replyQueue = new MessageSenderGateway(inMsg.ResponseQueue);

 replyQueue.Send(outMsg);

 }

 else

 {

 invalidQueue.Send(outMsg);

 }

 }

 protected abstract void OnMessage(Message inMsg);

}

The class is abstract because it does not provide an implementation for the GetTypedMessageBody
and OnMessage methods. We want our classes to deal as much as possible with strongly typed
business objects as opposed to Message data types. Therefore, we want would like the MQService
to verify the type of the message body and cast it to the correct type. The problem is that this
abstract base class does not know which type to cast it to because it can be used by many
different service implementations each of which is likely to use a different message type. To
perform as much work in the base class we created the GetTypedMessageBody and the abstract
method GetRequestBodyType. Each subclass has to implement the method GetRequestBodyType to
specify the type of the messages that it expects to receive. MQServer use the type to initialize the
XML formatter and to perform type checking. After these checks the subclass can safely cast the
incoming message body to the desired type without being afraid of exceptions. The exception
handling inside GetTypedMessageBodyis admittedly primitive at this point -- all it does is print a
message to the console. If this weren't a simple demo app, we would definitely use some more
sophisticated approach to logging or better yet a comprehensive Control Bus.

The OnMessage method is left to be implemented by the subclasses of MQService. We provide two
implementations, a synchronous one and an asynchronous one. The synchronous
implementation (RequestReplyService) calls the virtual method ProcessMessage which is expected
to return a reply message right away. The synchronous implementation of OnMessage calls

SendReply right away. The asynchronous implementation (AsyncRequestReplyService) in contrast,
defines the virtual ProcessMessage method without any return parameter. The inheriting
subclasses are responsible for calling SendReply.

public class RequestReplyService : MQService

{

 public RequestReplyService(IMessageReceiver receiver) : base(receiver) {}

 public RequestReplyService(String requestQueueName) : base (requestQueueName) {}

 protected override Type GetRequestBodyType()

 {

 return typeof(System.String);

 }

 protected virtual Object ProcessMessage(Object o)

 {

 String body = (String)o;

 Console.WriteLine("Received Message: " + body);

 return body;

 }

 protected override void OnMessage(Message inMsg)

 {

 inMsg.Formatter = GetFormatter();

 Object inBody = GetTypedMessageBody(inMsg);

 if (inBody != null)

 {

 Object outBody = ProcessMessage(inBody);

 if (outBody != null)

 {

 SendReply(outBody, inMsg);

 }

 }

 }

}

public class AsyncRequestReplyService : MQService

{

 public AsyncRequestReplyService(IMessageReceiver receiver) : base(receiver) {}

 public AsyncRequestReplyService(String requestQueueName) : base (requestQueueName)

{}

 protected override Type GetRequestBodyType()

 {

 return typeof(System.String);

 }

 protected virtual void ProcessMessage(Object o, Message msg)

 {

 String body = (String)o;

 Console.WriteLine("Received Message: " + body);

 }

 protected override void OnMessage(Message inMsg)

 {

 inMsg.Formatter = GetFormatter();

 Object inBody = GetTypedMessageBody(inMsg);

 if (inBody != null)

 {

 ProcessMessage(inBody, inMsg);

 }

 }

}

Both classes provide a default implementation of the GetRequestBodyType and ProcessMessage
methods. GetRequestBodyType specifies that the message expects a simple string and
ProcessMessage prints that string to the console. Technically speaking we could have omitted the
default implementations of these methods from RequestReplyService and
AsyncRequestReplyService so that they remain abstract themselves. This would allow the
compiler to detect any subclass of one of these classes that forgot to implement one of the abstract
methods. On the other hand, it is nice to have a default implementation of a service available for
testing and debugging purposes. So I decided to go ahead and let these classes be concrete so that
they can be instantiated as is.

In summary, the class diagram for the base classes looks as follows (we will discuss the bank,
credit bureau and loan broker classes shortly):

Base Classes for Message Services

Designing the Bank

Now that we have created a set of base classes and utility functions it is time to start
implementing the application logic. An easy way to start creating the solution is to build the
application components by reverse order of dependency. This means, we first create components
that do not depend on anything else. This allows us to run and test these components
independently. The bank is certainly one of those components. The loan broker depends on the
banks, but the banks themselves are self-contained. Conveniently enough, a bank is a prime
example of a request-reply-service. So implementing a bank should be as simple as inheriting
from RequestReplyService and filling in some business logic.

Before we start working on the internals of the bank, though, we should define the external
interface. We need to define the message types for loan quote requests and replies. For our simple
implementation, we defined a common message format for all banks. That lets us use a common
class for all five bank instances. C# supports structs, so we use those as message types:

Message Types for Bank

public struct BankQuoteRequest

{

 public int SSN;

 public int CreditScore;

 public int HistoryLength;

 public int LoanAmount;

 public int LoanTerm;

}

public struct BankQuoteReply

{

 public double InterestRate;

 public String QuoteID;

 public int ErrorCode;

}

Because we want to use a single class for all bank instances we need to parameterize the banks
for different behavior. Our banks are very simple institutions, so the only parameters are
BankName, RatePremium, and MaxLoanTerm. The RatePremium determines the number of interest rate
points that the bank charges above the prime rate, basically the bank's profit margin. The
MaxLoanTerm specifies the longest loan term (in months) that the bank is willing to extend. If a
loan request is for a longer duration than specified, the bank will thankfully decline. After
plugging in the appropriate convenience constructors and accessors, we can build the
ProcessMessage method of the bank:

Bank.cs

protected override Type GetRequestBodyType()

{

 return typeof(BankQuoteRequest);

}

protected BankQuoteReply ComputeBankReply(BankQuoteRequest requestStruct)

{

 BankQuoteReply replyStruct = new BankQuoteReply();

 if (requestStruct.LoanTerm <= MaxLoanTerm)

 {

 replyStruct.InterestRate = PrimeRate + RatePremium

 + (double)(requestStruct.LoanTerm / 12)/10

 + (double)random.Next(10) / 10;

 replyStruct.ErrorCode = 0;

 }

 else

 {

 replyStruct.InterestRate = 0.0;

 replyStruct.ErrorCode = 1;

 }

 replyStruct.QuoteID = String.Format("{0}-{1:00000}", BankName, quoteCounter);

 quoteCounter++;

 return replyStruct;

}

protected override Object ProcessMessage(Object o)

{

 BankQuoteRequest requestStruct;

 BankQuoteReply replyStruct;

 requestStruct = (BankQuoteRequest)o;

 replyStruct = ComputeBankReply(requestStruct);

 Console.WriteLine("Received request for SSN {0} for {1:c} / {2} months",

 requestStruct.SSN, requestStruct.LoanAmount,

requestStruct.LoanTerm);

 Thread.Sleep(random.Next(10) * 100);

 Console.WriteLine(" Quote: {0} {1} {2}",

 replyStruct.ErrorCode, replyStruct.InterestRate,

replyStruct.QuoteID);

 return replyStruct;

}

We can see that the concrete service has to implement only the GetRequestBodyType and
ProcessMessage methods. The service can safely cast the object passed in by ProcessMessage
because the base class has already verified the correct type. As we can see the remaining
implementation has rather little to do with messaging -- all the details are taken care if in the base
classes. The MQService and RequestReplyService classes act as a Service Activator, keeping the
application from having to dig into messaging system details.

The method ComputeBankReply contains the complete business logic for a bank. If life were only so
simple! Well, this is not an introduction into macro-economics but an example of messaging so I
took some liberties here to simplify things. The logic is the same as in the previous
implementation. The computed interest rate is the sum of the prime rate, the configured rate
premium, the loan term and a sprinkle of randomness. If the requested loan term is longer than
the bank is comfortable with, it returns an error code. Each quote that the bank issues receives a
unique quote ID so the customer may refer back to it later. In the current implementation I use a
simple incrementing counter to create these IDs.

The ProcessMessage method incorporates a small delay (between 1/10th and 1 second) to make
the bank transaction a bit more realistic. The ProcessMessage also logs some activities to the
console so we can see what is going on when we run it inside a simple console application.

To start a bank, we simply instantiate it with the appropriate parameters and call the Run method
that it inherits from RequestReplyService. Since the processing happens through events, the Run
method returns right away. Therefore, we need to be careful not to terminate the program right
after it starts. For my simple tests, I simple inserted a Console.ReadLine() statement after the call
to Run.

Designing the Credit Bureau

The credit bureau implementation is very analogous to the bank. The only difference is in the
message types and the business logic. The credit bureau can handle the following message types:

Message Types for Credit Bureau

public class CreditBureauRequest

{

 public int SSN;

}

public class CreditBureauReply

{

 public int SSN;

 public int CreditScore;

 public int HistoryLength;

}

The ProcessMessage method is nearly identical to the bank code, except it deals with different
data structures and invokes different application logic. The credit bureau also has a built-in
delay.

CreditBureau.cs

private int getCreditScore(int ssn)

{

 return (int)(random.Next(600) + 300);

}

private int getCreditHistoryLength(int ssn)

{

 return (int)(random.Next(19) + 1);

}

Designing the Loan Broker

Now that we have a functioning credit bureau and a bank class that lets us instantiate multiple
incarnations of a bank, we are ready to work in the internal design of the loan broker. The
routing and transformation patterns from this book help us segment the functions that the loan
broker needs to provide. We can group the internal functions of the loan broker into three main

portions (see picture): the request-reply interface that accepts requests from clients, the credit
bureau interface, and the bank interface.

Internal structure of the Loan Broker

In similar fashion to building the whole solution in reverse order of dependency, let's start
building the pieces that only depend on what's already there. Because we just built a bank and a
credit bureau service it makes sense to create the interface from the loan broker to these external
components. The credit bureau interface definitely seems simpler, so let's start there.

Credit Bureau Gateway

The loan broker needs to make requests to the credit bureau to obtain the customer's credit rating,
which is required by the bank. This implies sending a message to the external loan broker
component and receiving reply messages. Wrapping the details of sending a generic message
inside a MessageGateway allowed us to hide many MSMQ details from the rest of the application.
Following the same reasoning we should encapsulate sending and receiving messages to the
credit bureau inside a credit bureau gateway. This credit bureau gateway performs the important
function of semantic enrichment, allowing the loan broker to call methods such as GetCreditScore
as opposed to SendMessage. This makes the loan broker code more readable and provides a strong
encapsulation of the communication between the loan broker and the credit bureau. The
following diagram illustrates the levels of abstraction achieved by "chaining" the two gateways.

The Loan Broker Provides an Additional Level of Abstraction From the Messaging Infrastructure

In order to request a credit score, the gateway needs to create an instance of a
CreditBureauRequest struct as specified by credit bureau. Likewise, the interface will receive the
results inside a CreditBureauReply struct. In the beginning we stated that the solution is built
from separate executables to that the credit bureau can run on a different computer than the loan
broker. This means, though, that the loan broker may not have access to types defined in the
credit bureau's assembly. And really we would not want the loan broker to make any references
to the credit bureau internals because that would eliminate the benefits of loose coupling over
message queues. The loan broker is supposed to be completely unaware of who services the
credit score requests. The loan broker needs, however, access to the structs that define the
message formats. Luckily, the Microsoft .NET Framework SKD contains a tool that lets us do just
that, the XML Schema Definition Tool (xsd.exe). This tool can create XML schemas from an
assembly and also create C# source code from XML schemas. The following picture describes the
process:

Creating Class Stubs from Another Assembly

xsd.exe extracts public type definitions and creates an XML schema file based on the type
definition and optional attributes that control serialization. In our case, xsd.exe created the
following schema:

<?xml version="1.0" encoding="utf-8"?>

<xs:schema elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="CreditBureauRequest" type="CreditBureauRequest" />

 <xs:complexType name="CreditBureauRequest">

 <xs:sequence>

 <xs:element minOccurs="1" maxOccurs="1" name="SSN" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

 <xs:element name="CreditBureauReply" type="CreditBureauReply" />

 <xs:complexType name="CreditBureauReply">

 <xs:sequence>

 <xs:element minOccurs="1" maxOccurs="1" name="SSN" type="xs:int" />

 <xs:element minOccurs="1" maxOccurs="1" name="CreditScore" type="xs:int" />

 <xs:element minOccurs="1" maxOccurs="1" name="HistoryLength" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Run" nillable="true" type="Run" />

 <xs:complexType name="Run" />

</xs:schema>

Usually a service would publish this schema definition to potential callers. This allows the caller
the option to produce the required message format in a number of different ways. First, the caller
could construct the xsd-compliant explicitly. Alternatively, the caller could use the .NET built-in
serialization. Since the .NET CLR is programming language independent, the client would still
have a choice of programming languages.

We decide to use .NET's built-in serialization. Therefore, we run xsd.exe again to create source
files to be used by the service consumer, and get a file that looks like this:

//

// This source code was auto-generated by xsd, Version=1.1.4322.573.

//

namespace CreditBureau {

 using System.Xml.Serialization;

 /// <remarks/>

 [System.Xml.Serialization.XmlRootAttribute(Namespace="", IsNullable=false)]

 public class CreditBureauRequest {

 /// <remarks/>

 public int SSN;

 }

 ...

It is worth noting that the .NET XML serialization and deserialization allows loose coupling. So
technically speaking, the request message that we send to the credit bureau does not have to be of
the exact same type that is used inside the credit bureau implementation as long as the XML
representation contains the required elements. For example, this would allow a requestor to send

a message whose XML representation contains additional elements without disturbing the
communication. For our example, we assume that the loan broker is willing to conform to the
credit bureau's specified format and use the same types on both ends of the communication.

We are now ready to send messages in the correct format to the credit bureau. We need to keep
in mind, though, that this communication is asynchronous with a separate, asynchronous request
message and reply message. We could design the credit bureau gateway so that after sending a
request the gateway code waits for the response to come back. This approach has one significant
drawback: the application will just sit and wait while the credit bureau is processing a message.
This type of pseudo-synchronous processing can quickly result in a performance bottleneck. If
we make each step of the process pseudo-synchronous it means that the loan broker can only
process one request process at a time. For example, it would not be able to request the credit
score for a new request while it is still waiting for bank replies for the previous quote request. To
visualize the difference let's consider that the loan broker has to perform two main steps: get the
credit score and get the best quote from the banks. If we assume the loan broker runs only a
single, sequential execution, the execution will look like the top half of the following picture:

Pipeline Processing Can Provide Significantly Higher Throughput

Because the bulk of the actual work is executed by external components the loan broker
component basically sits around and waits for results -- not an efficient use of computing
resources. If we design the whole loan broker process as an Event-Driven Consumer, we can start
processing multiple requests in parallel and process the results as they come in. We call this
mode 'pipeline' processing. The scalability of the system now only depends on the processing
capacity of the external components and not on the loan broker. If we run only a single instance
of the credit bureau process, the difference may not be as pronounced because the bureau request
queue will queue up the requests anyway. However, if we decide to run multiple credit bureau
instances in parallel we will see immediate performance gains (more on performance below).

There are two primary ways to make the loan broker process event-driven. For once, we can
create a sequential process but create a new thread for each incoming message. Alternatively, we
can let the messaging system notify the loan broker whenever an event is pending. This way we
let the messaging system control the threads of execution. Each approach has pros and cons.
Coding a sequential process can make the code easier to understand, however if our component

is primarily a broker component that brokers messages between external entities it would result
in a potentially large number of threads that are waiting for incoming messages. These threads
could consume a large number of system resources and accomplish little. Therefore, we may be
better off to let the messaging system drive the execution. Whenever a message is ready to be
consumed, the system will invoke the broker execution. This lets us maintain a single thread of
execution and not worry about thread management. However, we need to deal with the fact that
the execution path is not a single sequential method, but multiple code segments that are
executed as messages arrive.

You might have guessed that the way to make things event-driven in .NET is the use of delegates.
As expected, the credit bureau gateway defines a new delegate.

public delegate void OnCreditReplyEvent(CreditBureauReply creditReply, Object ACT);

This delegate allows other code segments to tell the credit bureau gateway which method to call
when the result come in. The credit bureau gateway passes a properly typed CreditBureauReply
struct back to the caller. It also passes something we call ACT -- an Asynchronous Completion Token
[POSA]. This token allows the caller to pass in data to the gateway and receive the data back
when the corresponding reply message comes in. Basically, the credit bureau gateway performs
correlation for the request and reply messages so that the caller does not have to.

What's left is a method to request a credit score and the method that handles an incoming
message, correlating the proper ACT and invoking the properly typed delegate.

CreditBureauGateway.cs

internal struct CreditRequestProcess

{

 public int CorrelationID;

 public Object ACT;

 public OnCreditReplyEvent callback;

}

internal class CreditBureauGateway

{

 protected IMessageSender creditRequestQueue;

 protected IMessageReceiver creditReplyQueue;

 protected IDictionary activeProcesses = (IDictionary)(new Hashtable());

 protected Random random = new Random();

 public void Listen()

 {

 creditReplyQueue.Begin();

 }

 public void GetCreditScore(CreditBureauRequest quoteRequest, OnCreditReplyEvent

OnCreditResponse, Object ACT)

 {

 Message requestMessage = new Message(quoteRequest);

 requestMessage.ResponseQueue = creditReplyQueue.GetQueue();

 requestMessage.AppSpecific = random.Next();

 CreditRequestProcess processInstance = new CreditRequestProcess();

 processInstance.ACT = ACT;

 processInstance.callback = OnCreditResponse;

 processInstance.CorrelationID = requestMessage.AppSpecific;

 creditRequestQueue.Send(requestMessage);

 activeProcesses.Add(processInstance.CorrelationID, processInstance);

 }

 private void OnCreditResponse(Message msg)

 {

 msg.Formatter = GetFormatter();

 CreditBureauReply replyStruct;

 try

 {

 if (msg.Body is CreditBureauReply)

 {

 replyStruct = (CreditBureauReply)msg.Body;

 int CorrelationID = msg.AppSpecific;

 if (activeProcesses.Contains(CorrelationID))

 {

 CreditRequestProcess processInstance =

(CreditRequestProcess)(activeProcesses[CorrelationID]);

 processInstance.callback(replyStruct, processInstance.ACT);

 activeProcesses.Remove(CorrelationID);

 }

 else { Console.WriteLine("Incoming credit response does not match any

request"); }

 }

 else

 { Console.WriteLine("Illegal reply."); }

 }

 catch (Exception e)

 {

 Console.WriteLine("Exception: {0}", e.ToString());

 }

 }

}

When a caller requests a credit score via the GetCreditScoremethod, the credit bureau gateway
allocates a new instance of the CreditRequestProcess structure. The collection activeProcesses
contains one instance of CreditRequestProcess for each outstanding request, keyed by the
Correlation Identifier of the message. The structure also holds the delegate for the
OnCreditReplyEvent event. Storing the delegate for each message allows each caller to specify a
different callback location for each request. As we will see later this allows the caller to use
delegates to manage conversation state.

it is important to note that we do not use the message's built-in Id field to correlate. Instead, we
assign a random integer number to the AppSpecific field and correlate incoming messages by the
value of that field (remember that we designed the RequestReplyService to copy both the Id field
and the AppSpecific field to the reply message). Why would we want to correlate by something
else but the message ID? The advantage of the message ID is that it is unique for each message in
the system. But that also limits our flexibility. Requiring a reply message to correlate to the
message ID of the request message does not allow us to insert intermediate steps (for example, a
router) into the message flow. Because any intermediate step would consume the request
message and publish a new message to the service, the reply message's CorrelationId would
match the message the service received but not the message that the Loan Broker originally sent
(see picture).

Intermediaries Hinder Correlation with System-Generated Message IDs

There are two solutions to this problem. First, any intermediate would be required to intercept
both request and reply messages and make sure to equip reply messages with the correct
CorrelationId value (for an example of this approach see the Smart Proxy. Alternatively, we can
use a separate field for correlation purposes so that all related messages that flow through the
intermediary and the service carry the same ID. In this example we chose the second approach to
make it easier for an intermediary component to intercept request messages between the Loan
Broker and the Credit Bureau (we will take advantage of this in Loan Broker System Management.

How should we pick a value for the AppSpecific property? We could use sequential values, but
then we have to be careful that two concurrent instances do not use use the same starting value.
We could also use a central ID generation module (e.g. a Database) that guarantees system-wide
uniqueness. This seemed a little too much trouble for this simple example, so we chose a random
number. .NET generates random numbers as signed 32-bit integers so that the odds of a duplicate
are 1 in 2 billion -- a risk we are willing to take.

The credit bureau gateway now provides the clean abstraction from the Windows message
queuing infrastructure that we were aiming for. The only public interface into the credit bureau
gateway (besides constructors) are a delegate and two methods:

delegate void OnCreditReplyEvent(CreditBureauReply creditReply, Object ACT);

void Listen() {...}

void GetCreditScore(CreditBureauRequest quoteRequest, OnCreditReplyEvent

OnCreditResponse, Object ACT) {...}

Neither construct makes any reference to a message or a message queue. This provides a number
of benefits. First, we can easily implement a stubbed out version of the credit bureau gateway
that does not rely on message queues at all (similar to the MockQueue). Second, we can replace the
implementation of the credit bureau gateway if we decide to use a transport different from
MSMQ. For example, if we were going to use a Web services interface using SOAP and http
instead of MSMQ the methods exposed by the gateway would most likely not have to change at
all.

Bank Gateway

The design of the bank gateway follows the same design principles as the design of the credit
bureau gateway. We use the same process as before to declare stubs for the request and reply
message types specified by the bank. The external portion of the bank gateway is very similar to
the credit bureau gateway:

delegate void OnBestQuoteEvent(BankQuoteReply bestQuote, Object ACT);

class BankGateway {

 void Listen() {...}

 void GetBestQuote(BankQuoteRequest quoteRequest, OnBestQuoteEvent onBestQuoteEvent,

Object ACT) {...}

 ...

}

The internal workings are slightly more complex because the Scatter-Gather style of interaction
routes a single BankQuoteRequest to multiple banks. Likewise, a single BankQuoteReply is usually
the result of multiple bank quote reply messages. The former part is handled by a Recipient List
while the latter part is handled by an Aggregator. Let's start with the Recipient List.

The Recipient List has to implement three main functions:

• Computation of appropriate recipients
• Sending the message to the recipients
• Initializing the Aggregator to process incoming replies.

As described in the design overview (Introduction to Composed Messaging Examples), this
implementation uses the distribution style of Scatter-Gather, actively determining which banks to
route the request to. This approach makes business sense if the banks charge the broker for each
quote or the bank and the broker have an agreement that requires the broker to prequalify leads
he or she generates . The loan broker makes the routing decision based on the customer's credit
score, the amount of the loan and the length of the credit history. We encapsulate each connection
to a bank inside a class that inherits from the abstract BankConnection. This class contains a
reference to the properly addressed message queue and a method CanHandleLoanRequest that
determines whether the quote request should be forwarded to this bank. The
BankConnectionManager simply iterates through the list of all bank connections and compiles a list
of those that match the criteria of the loan quote. If the list of banks was longer we could consider
implementing a configurable rules engine. We prefer the current approach because it is simple
and explicit.

internal class BankConnectionManager

{

 static protected BankConnection[] banks = {new Bank1(), new Bank2(), new Bank3(),

new Bank4(), new Bank5() };

 public IMessageSender[] GetEligibleBankQueues(int CreditScore, int HistoryLength,

int LoanAmount)

 {

 ArrayList lenders = new ArrayList();

 for (int index = 0; index < banks.Length; index++)

 {

 if (banks[index].CanHandleLoanRequest(CreditScore, HistoryLength,

LoanAmount))

 lenders.Add(banks[index].Queue);

 }

 IMessageSender[] lenderArray = (IMessageSender

[])Array.CreateInstance(typeof(IMessageSender), lenders.Count);

 lenders.CopyTo(lenderArray);

 return lenderArray;

 }

}

internal abstract class BankConnection

{

 protected MessageSenderGateway queue;

 protected String bankName = "";

 public MessageSenderGateway Queue

 {

 get { return queue; }

 }

 public String BankName

 {

 get { return bankName; }

 }

 public BankConnection (MessageQueue queue) { this.queue = new

MessageSenderGateway(queue); }

 public BankConnection (String queueName) { this.queue = new

MessageSenderGateway(queueName); }

 public abstract bool CanHandleLoanRequest(int CreditScore, int HistoryLength, int

LoanAmount);

}

internal class Bank1 : BankConnection

{

 protected String bankname = "Exclusive Country Club Bankers";

 public Bank1 () : base (".\\private$\\bank1Queue") {}

 public override bool CanHandleLoanRequest(int CreditScore, int HistoryLength, int

LoanAmount)

 {

 return LoanAmount >= 75000 && CreditScore >= 600 && HistoryLength >= 8;

 }

}

...

Once the list of relevant banks is compiled, sending the message is a simple matter of iterating
over the list. In a production application, this iteration should occur inside a single transaction to
avoid error conditions where a message may be sent to some banks but not to others. Once again,
we chose to let simplicity prevail for this example.

internal class MessageRouter

{

 public static void SendToRecipientList (Message msg, IMessageSender[] recipientList)

 {

 IEnumerator e = recipientList.GetEnumerator();

 while (e.MoveNext())

 {

 ((IMessageSender)e.Current).Send(msg);

 }

 }

}

Now that request message are on their way to the banks we need to initialize the Aggregator to
expect incoming bank quotes. Due to the event driven nature of the loan broker the aggregator
needs to be prepared to work on more than one aggregate concurrently -- maintaining one active
aggregate for each quote request that is pending. This means that incoming messages need to be
uniquely correlated to a specific aggregate. Unfortunately, we cannot use the message ID as
correlation identifier because the Recipient List needs to send individual messages to each of the
banks. As a result, if three banks participate in a quote request, the Recipient List needs to send 3
unique messages, one to each bank. Each of these messages will have a unique message ID. If the
banks correlate by message ID the three responses will have different correlation IDs even
though they belong to the same aggregate. We could have the aggregate store the message ID for
each message and thus correlate the incoming message's correlation ID back to the aggregate.
However, this would seem more complicated than we need it to be. Instead, we just generate our
own correlation IDs -- one for each aggregate as opposed to one for each message. We store this
(numeric) ID in the AppSpecific property of the outgoing request messages. The banks inherit
from RequestReplyService which already transfers the incoming message's AppSpecific property
to the reply messages. When a quote message comes in from a bank, the BankGateway can easily
correlate the incoming message by the AppSpecific property of the message (see picture).

The BankGateway uses the AppSpecific Message Property to Correlate Response Messages to Aggregates

The bank gateway initializes an aggregate with the aggregate ID (generated by a simple counter)
and the number of expected messages. In addition, the caller needs to supply a delegate and can
optionally specify an object reference to an ACT in the same way the credit bureau gateway
functioned. The aggregation strategy is simple. The aggregate is considered complete when all
selected banks responded with a reply message. The Recipient List initializes the aggregate with

the number of expected messages. Remember that banks have the option of declining to provide
a quote. So we can know when an aggregate is complete we require the banks to provide a reply
message with the error code set if they do not want to provide a quote. We could easily modify
the aggregation strategy, for example to cut off the bidding after 1 second and take the best
response up to that point.

internal class BankQuoteAggregate

{

 protected int ID;

 protected int expectedMessages;

 protected Object ACT;

 protected OnBestQuoteEvent callback;

 protected double bestRate = 0.0;

 protected ArrayList receivedMessages = new ArrayList();

 protected BankQuoteReply bestReply = null;

 public BankQuoteAggregate(int ID, int expectedMessages, OnBestQuoteEvent callback,

Object ACT)

 {

 this.ID = ID;

 this.expectedMessages = expectedMessages;

 this.callback = callback;

 this.ACT = ACT;

 }

 public void AddMessage(BankQuoteReply reply)

 {

 if (reply.ErrorCode == 0)

 {

 if (bestReply == null)

 {

 bestReply = reply;

 }

 else

 {

 if (reply.InterestRate < bestReply.InterestRate)

 {

 bestReply = reply;

 }

 }

 }

 receivedMessages.Add(reply);

 }

 public bool IsComplete()

 {

 return receivedMessages.Count == expectedMessages;

 }

 public BankQuoteReply getBestResult()

 {

 return bestReply;

 }

 public void NotifyBestResult()

 {

 if (callback != null)

 {

 callback(bestReply, ACT);

 }

 }

}

Armed with the bank connection manager, the recipient list, and the aggregate the
implementation of the BankGateway's functions becomes relatively simple:

internal class BankGateway

{

 protected IMessageReceiver bankReplyQueue;

 protected BankConnectionManager connectionManager;

 protected IDictionary aggregateBuffer = (IDictionary)(new Hashtable());

 protected int aggregationCorrelationID;

 public void Listen()

 {

 bankReplyQueue.Begin();

 }

 public void GetBestQuote(BankQuoteRequest quoteRequest, OnBestQuoteEvent

onBestQuoteEvent, Object ACT)

 {

 Message requestMessage = new Message(quoteRequest);

 requestMessage.AppSpecific = aggregationCorrelationID;

 requestMessage.ResponseQueue = bankReplyQueue.GetQueue();

 IMessageSender[] eligibleBanks =

 connectionManager.GetEligibleBankQueues(quoteRequest.CreditScore,

quoteRequest.HistoryLength,

 quoteRequest.LoanAmount);

 aggregateBuffer.Add(aggregationCorrelationID,

 new BankQuoteAggregate(aggregationCorrelationID, eligibleBanks.Length,

onBestQuoteEvent, ACT));

 aggregationCorrelationID++;

 MessageRouter.SendToRecipientList(requestMessage, eligibleBanks);

 }

 private void OnBankMessage(Message msg)

 {

 msg.Formatter = GetFormatter();

 BankQuoteReply replyStruct;

 try

 {

 if (msg.Body is BankQuoteReply)

 {

 replyStruct = (BankQuoteReply)msg.Body;

 int aggregationCorrelationID = msg.AppSpecific;

 Console.WriteLine("Quote {0:0.00}% {1} {2}",

 replyStruct.InterestRate, replyStruct.QuoteID,

replyStruct.ErrorCode);

 if (aggregateBuffer.Contains(aggregationCorrelationID))

 {

 BankQuoteAggregate aggregate =

(BankQuoteAggregate)(aggregateBuffer[aggregationCorrelationID]);

 aggregate.AddMessage(replyStruct);

 if (aggregate.IsComplete())

 {

 aggregate.NotifyBestResult();

 aggregateBuffer.Remove(aggregationCorrelationID);

 }

 }

 else

 { Console.WriteLine("Incoming bank response does not match any

aggregate"); }

 }

 else

 { Console.WriteLine("Illegal request."); }

 }

 catch (Exception e)

 {

 Console.WriteLine("Exception: {0}", e.ToString());

 }

 }

}

When the bank gateway receives a quote reply from a bank the OnBankMessage method executes.
The method converts the incoming message to the correct type and goes on to locate the related
aggregate via the AppSpecific property. It adds the new bid to the aggregate. Once the aggregate
is complete (as defined in the BankQuoteAggregate class, the BankGateway invokes the delegate
supplied by the caller.

Accepting Requests

Now that we have a well encapsulated credit bureau gateway and bank gateway we are ready to
have the loan broker accept requests. In the earlier sections we discussed the design of the
MQService and AsyncRequestReplyService base class. The LoanBroker class inherits from
AsyncRequestReplyService because it cannot send the results back to the reply queue right away,
but only after several asynchronous operations (obtaining the credit store and communicating
with the banks) complete.

The first step in implementing the LoanBroker is to define the message types the loan broker
handles:

public struct LoanQuoteRequest

{

 public int SSN;

 public double LoanAmount;

 public int LoanTerm;

}

public struct LoanQuoteReply

{

 public int SSN;

 public double LoanAmount;

 public double InterestRate;

 public string QuoteID;

}

Next, we need to create a class that inherits from AsyncRequestReplyService and override the
ProcessMessage method.

The "Process"

The loan broker is different from the previous classes because the process that is triggered by an
incoming message is not contained in any single method. Instead, the completion of the process
depends on a sequence of external events. The loan broker can receive three types of events:

• A new loan request message arrives
• A credit score reply message arrives (via the CreditBureauGateway)
• A bank quote message arrives (via the BankGateway)

Since the logic for the loan broker is spread across multiple event handlers we need to keep the
state of the broker across these functions. That's where the asynchronous completion tokens come
in! Remember that the credit bureau gateway and the bank gateway allow the caller (the loan
broker) to pass a reference to an object instance when sending a request. The gateway passes the
object reference back when the reply message is received. To take advantage of this functionality,
we declare an ACT in the loan broker as follows:

internal class ACT

{

 public LoanQuoteRequest loanRequest;

 public Message message;

 public ACT(LoanQuoteRequest loanRequest, Message message)

 {

 this.loanRequest = loanRequest;

 this.message = message;

 }

}

The ACT contains a copy of the original request message (which contains the message ID and the
reply address required to create the reply message) and the request data structure (needed to
copy the SSN and the loan amount into the reply message). Technically speaking, the ACT stores
duplicate information because we could extract the content of the request structure from the
request message. However, the convenience of accessing a strongly typed structure is worth the
few extra bytes.

The remainder of the loan broker is implemented as follows:

internal class LoanBroker : AsyncRequestReplyService

{

 protected ICreditBureauGateway creditBureauInterface;

 protected BankGateway bankInterface;

 public LoanBroker(String requestQueueName,

 String creditRequestQueueName, String creditReplyQueueName,

 String bankReplyQueueName, BankConnectionManager

connectionManager): base(requestQueueName)

 {

 creditBureauInterface = (ICreditBureauGateway)

 (new CreditBureauGatewayImp(creditRequestQueueName, creditReplyQueueName));

 creditBureauInterface.Listen();

 bankInterface = new BankGateway(bankReplyQueueName, connectionManager);

 bankInterface.Listen();

 }

 protected override Type GetRequestBodyType()

 {

 return typeof(LoanQuoteRequest);

 }

 protected override void ProcessMessage(Object o, Message msg)

 {

 LoanQuoteRequest quoteRequest;

 quoteRequest = (LoanQuoteRequest)o;

 CreditBureauRequest creditRequest =

LoanBrokerTranslator.GetCreditBureaurequest(quoteRequest);

 ACT act = new ACT(quoteRequest, msg);

 creditBureauInterface.GetCreditScore(creditRequest, new

OnCreditReplyEvent(OnCreditReply), act);

 }

 private void OnCreditReply(CreditBureauReply creditReply, Object act)

 {

 ACT myAct = (ACT)act;

 Console.WriteLine("Received Credit Score -- SSN {0} Score {1} Length {2}",

 creditReply.SSN, creditReply.CreditScore,

creditReply.HistoryLength);

 BankQuoteRequest bankRequest =

 LoanBrokerTranslator.GetBankQuoteRequest(myAct.loanRequest ,creditReply);

 bankInterface.GetBestQuote(bankRequest, new OnBestQuoteEvent(OnBestQuote),

act);

 }

 private void OnBestQuote(BankQuoteReply bestQuote, Object act)

 {

 ACT myAct = (ACT)act;

 LoanQuoteReply quoteReply =

LoanBrokerTranslator.GetLoanQuoteReply(myAct.loanRequest, bestQuote);

 Console.WriteLine("Best quote {0} {1}", quoteReply.InterestRate,

quoteReply.QuoteID);

 SendReply(quoteReply, myAct.message);

 }

}

LoanBroker inherits from AsyncRequestReplyService which provides support for receiving
requests and sending correlated replies. LoanBroker overrides the method ProcessMessage to deal
with incoming request messages. ProcessMessage creates a new instance of the ACT and calls the
credit bureau gateway to request a credit score. Interestingly, the method ends there. Processing
continues when the credit bureau gateway invokes the delegate specified by LoanBroker:
OnCreditReply. This method uses the ACT and the reply to create a bank quote request and calls
the bank gateway to send the request messages. This time it specifies the method OnBestQuote as
the callback delegate. Once the bank gateway received all bank quote replies it invokes this
method via the delegate and passes back the instance of the ACT. OnBestQuote uses the bank
quote and the ACT to create a reply to the customer and sends it off using the base class
implementation of SendReply.

One class you probably noticed in the source code is the LoanBrokerTranslator. This class
provides a handful of static methods that help convert between the different message formats.

The LoanBroker class demonstrates the trade-off we made in our design. The code is free of
references to messaging or thread-related concepts (except for the inheritance from
AsyncRequestReplyService), which makes the code very easy to read. However, the execution of
the main function is spread across three methods that make no direct reference to each other
besides the delegates. This can make the flow of execution hard to understand without
considering the total solution including all external components.

Refactoring the Loan Broker

When we look at the way the loan broker functions we realize that we are separating data and
functionality. We have one instance of the LoanBrokerclass that emulates multiple instances by
means of the ACT collection. While ACT's are very useful they seem to go against the spirit of
object-oriented programming by separating data and functionality -- the two parts that make up
an object. However, we can refactor the LoanBroker class to avoid the repeated lookup of the ACT
if we use the delegates in a better way. Delegates are essentially type-safe function pointers. As
such they point to a specific object instance. So rather than supplying the credit bureau and bank
gateway with a reference to a method in the sole LoanBroker instance we can use the delegates to

point to a specific instance of a 'process object' that maintains the current state like an ACT but
also contains the logic of the loan broker process'. To do this we turn the ACT into new class
called LoanBrokerProcess and move the message handler functions into this class:

internal class LoanBrokerProcess

{

 protected LoanBrokerPM broker;

 protected String processID;

 protected LoanQuoteRequest loanRequest;

 protected Message message;

 protected CreditBureauGateway creditBureauGateway;

 protected BankGateway bankInterface;

 public LoanBrokerProcess(LoanBrokerPM broker, String processID,

 CreditBureauGateway creditBureauGateway,

 BankGateway bankGateway,

 LoanQuoteRequest loanRequest, Message msg)

 {

 this.broker = broker;

 this.creditBureauGateway = creditBureauGateway;

 this.bankInterface = bankGateway;

 this.processID = processID;

 this.loanRequest = loanRequest;

 this.message = msg;

 CreditBureauRequest creditRequest =

LoanBrokerTranslator.GetCreditBureaurequest(loanRequest);

 creditBureauGateway.GetCreditScore(creditRequest, new

OnCreditReplyEvent(OnCreditReply), null);

 }

 private void OnCreditReply(CreditBureauReply creditReply, Object act)

 {

 Console.WriteLine("Received Credit Score -- SSN {0} Score {1} Length {2}",

creditReply.SSN, creditReply.CreditScore, creditReply.HistoryLength);

 BankQuoteRequest bankRequest =

LoanBrokerTranslator.GetBankQuoteRequest(loanRequest, creditReply);

 bankInterface.GetBestQuote(bankRequest, new OnBestQuoteEvent(OnBestQuote),

null);

 }

 private void OnBestQuote(BankQuoteReply bestQuote, Object act)

 {

 LoanQuoteReply quoteReply = LoanBrokerTranslator.GetLoanQuoteReply(loanRequest,

bestQuote);

 Console.WriteLine("Best quote {0} {1}", quoteReply.InterestRate,

quoteReply.QuoteID);

 broker.SendReply(quoteReply, message);

 broker.OnProcessComplete(processID);

 }

}

The methods no longer reference the ACT parameter provided by the credit bureau gateway and
the bank gateway because all necessary information is stored in the instance of the
LoanBrokerProcess. Once the process completes, it sends the reply message using the SendReply
method that the LoanBrokerPM inherits from the AsyncRequestReplyService. Next, it notifies the
LoanBrokerPM of the completion of the process.

internal class LoanBrokerPM : AsyncRequestReplyService

{

 protected CreditBureauGateway creditBureauGateway;

 protected BankGateway bankInterface;

 protected IDictionary activeProcesses = (IDictionary)(new Hashtable());

 public LoanBrokerPM(String requestQueueName,

 String creditRequestQueueName, String creditReplyQueueName,

 String bankReplyQueueName, BankConnectionManager

connectionManager): base(requestQueueName)

 {

 creditBureauGateway = new CreditBureauGateway(creditRequestQueueName,

creditReplyQueueName);

 creditBureauGateway.Listen();

 bankInterface = new BankGateway(bankReplyQueueName, connectionManager);

 bankInterface.Listen();

 }

 protected override Type GetRequestBodyType()

 {

 return typeof(LoanQuoteRequest);

 }

 protected override void ProcessMessage(Object o, Message message)

 {

 LoanQuoteRequest quoteRequest;

 quoteRequest = (LoanQuoteRequest)o;

 String processID = message.Id;

 LoanBrokerProcess newProcess =

 new LoanBrokerProcess(this, processID, creditBureauGateway,

 bankInterface, quoteRequest, message);

 activeProcesses.Add(processID, newProcess);

 }

 public void OnProcessComplete(String processID)

 {

 activeProcesses.Remove(processID);

 }

}

This LoanBrokerPM is basically a generic implementation of a Process Manager. It creates a new
process instance when a new message arrives. When a process completes, the process manager
removes the process instance from the list of active processes. The process manager uses the
message ID as the unique process ID assigned to each process instance. We can now change the
behavior of the loan broker just by editing the LoanBrokerProcess class, which has no references
to messaging besides passing the message object around. It looks like paying attention to proper
encapsulation and refactoring paid off.

The following class diagram summarizes the internal structure of the loan broker:

Loan Broker Class Diagram

Putting it All Together

The only remaining piece is the test client. The test client design is similar to that of the credit
bureau gateway. The test client can make a specified number of repeated requests and correlate
incoming responses to outstanding requests. Once we start all processes (banks, credit bureau
and the loan broker), we can execute the example. We use a number of simple Main classes to start
the respective components as console applications. We see a flurry of activity on the screen
indicating the flow of messages through the system (see picture).

Running the MSMQ Example

Improving Performance

Now that we have the complete solution running we can gather some performance metrics to
compare the throughput of the asynchronous solution to the synchronous solution. Using the test
data generator we send 50 randomly generated requests to the loan broker. The test data
generator reports that is took a total of 27 seconds to receive the 50 reply messages.

Sending 50 Quote Requests

It would be tempting to think that each request took 27 / 50 = 0.5 seconds. Wrong! The throughput
of the loan broker is 50 requests in 27 seconds, but some of the requests took 26 seconds to
complete! Why is the system so slow? Let's look at a snapshot of the message queue during the
test run:

39 Messages Are Queued up in the Credit Request Queue

39 messages are queued up in the credit bureau request queue! So apparently the credit bureau is
our bottleneck because all quote requests have to go through the credit bureau first. Now we can
reap some of the rewards of loose coupling and start two additional instances of the credit
bureau. Now we have three parallel instances of the credit bureau service running. This should
fix our bottleneck, right? Let's see:

Sending 50 Quote Requests, Using 3 credit Bureau Instances

The total time to process all 50 messages is reduced to 21 seconds with the longest request
waiting for a response for less than 15 seconds. On average, the client had to wait for a reply to
the loan request for 8 seconds, half of the original version. It looks like we eliminated the
bottleneck. The message throughput did not increase as dramatically as we might have hoped
but we need to remember that for this simple example we are running all processes on a single
CPU so that all processes compete for the same resources. Let's look at the new queue statistics to
verify that the credit bureau bottleneck is in fact corrected :

Now Bank 5 Appears to be a Bottleneck

Well, it looks like we eliminated one bottleneck just to find a new one -- Bank 5. Why Bank 5?
Bank 5 is the Pawn Shop that offers loans to everybody. So Bank 5 is part of almost every quote
request. We could now go on to start multiple instances of Bank 5 but it's not realistic to expect
the pawnshop to run multiple instances just to improve our throughput. Our other option is to
change the routing logic for the bank requests. Since the Pawn Shop charges a substantial
premium over the other banks the Pawn Shop quote tends to be the lowest quote only in those
cases where no other bank provided a quote. Taking this observation into account we can
improve the efficiency of the system by not routing requests to the Pawn Shop if the quote can
also be serviced by another bank without affecting the overall behavior of the system.

We change the BankConnectionManager to include Bank 5 only for those quote requests that cannot
be serviced by any other bank. The modified BankConnectionManager looks like this:

internal class BankConnectionManager

{

 static protected BankConnection[] banks = {new Bank1(), new Bank2(), new Bank3(),

new Bank4() };

 static protected BankConnection catchAll = new Bank5();

 public IMessageSender[] GetEligibleBankQueues(int CreditScore, int HistoryLength,

int LoanAmount)

 {

 ArrayList lenders = new ArrayList();

 for (int index = 0; index < banks.Length; index++)

 {

 if (banks[index].CanHandleLoanRequest(CreditScore, HistoryLength,

LoanAmount))

 lenders.Add(banks[index].Queue);

 }

 if (lenders.Count == 0)

 lenders.Add(catchAll.Queue);

 IMessageSender[] lenderArray = (IMessageSender

[])Array.CreateInstance(typeof(IMessageSender), lenders.Count);

 lenders.CopyTo(lenderArray);

 return lenderArray;

 }

}

Running with the modified code produces the following results:

Sending 50 Quote Requests, Using 3 credit Bureau Instances and a modified BankConnectionManager

The test results now show that all 50 requests were serviced in 12 seconds, half of the original
time. More importantly, the average time to service a loan quote request is now under 4 seconds,
a 4-fold improvement over the initial version. This example demonstrates the advantage of
predictive routing by using a Recipient List. Because the loan broker has control over the routing
we can decide how much 'intelligence' we can build into the routing logic without requiring any
changes to the external parties. The trade-off is that the loan broker becomes more and more
dependent on knowledge about the internal parties. For example, while the original
BankConnectionManager treated all banks as equal, the modified version relies on the fact that
Bank5 is a catch-all provider that should only be contacted if there are not other options. If Bank5
starts to offer better rates, the clients may no longer get the best possible deal.

The screen clip also demonstrates that response messages do not necessarily arrive in the order in
which the requests were made. We can see that the test client received the response to request
number 48 right after the response to request number 43. Because we are not missing any
responses, this means that the test client received responses 44 through 47 before response 43.
How did these requests 'pass' number 43? It looks like the request number 43 was routed to the

General Retail Bank (Bank 3). After the Pawn Shop, this bank has the next least restrictive
selection criteria and is more likely to be backed up with requests than the other banks. If
requests number 44 through 47 did not match the General Retail Bank's criteria, the bank
gateway would have received all responses for these requests while the quote request for request
number 43 was still sitting in the bank3Queue. Because our loan broker is truly event driven it will
reply to a loan request as soon as it receives all bank quotes. As a result, if the bank quotes for
request number 44 arrive before the bank quotes for number 43 the loan broker will send the
reply message for request number 44 first. This scenario also highlights the importance of the
Correlation Identifier in the messages so that the test client can match responses to requests even if
they arrive out of order.

Tuning asynchronous, message-based systems can be a very complex task. Our example showed
some of the most basic techniques of identifying and resolving bottlenecks. But even our simple
example made it clear that correcting one problem (the credit bureau bottleneck) can cause
another problem (the Bank 5 bottleneck) to surface. We can also clearly see the advantages of
asynchronous messaging and event-driven consumers. We were able to process 50 quote requests
in 12 seconds -- a synchronous solution would have taken 8 or 10 times as long!

A Few Words on Testing

The loan broker example demonstrates how a simple application can become reasonably complex
once it becomes distributed, asynchronous and event-driven. We now have a dozen classes and
use delegates throughout to deal with the event-driven nature of asynchronous message
processing. The increased complexity also means increased risk of defects. The asynchronous
nature means risk of defects that are hard to reproduce or trouble-shoot because they depend on
specific temporal conditions. Because of these additional risks, messaging solutions require a
very thorough approach to testing. While we could probably write a whole book on testing
messaging solutions I do want to include some simple, actionable advice on testing in this
example. Let me summarize the testing advice in the following there rules:

• Isolate the application from the messaging implementation by using interfaces and
implementation classes

• Test the business logic with unit test cases before plugging it into the messaging
environment

• Provide a 'Mock' implementation of the messaging layer that allows you to test
synchronously

Isolate the Application From the Messaging Implementation

Testing a single application is much easier than testing multiple, distributed applications
connected by messaging channels. A single application allows us to trace through the complete
execution path, we do not need a complex start-up procedure to fire up all components, and
there is no need to purge channels between tests (see Channel Purger. Sometimes it is useful to
"stub out" some external functions while testing others. For example, while we are testing the

bank gateway we might as well stub out the credit bureau gateway instead of actually sending
messages to an external credit bureau process.

How can we achieve some of the benefits of testing inside a single application with a minimal
impact on the application code? We can separate the implementation of a messaging gateway
from the interface definition. That allows us to provide multiple implementations of the interface.

Separating Credit Bureau Interface from Implementation

Because we encapsulated all messaging-specific logic inside the credit bureau gateway we can
define a very simple interface:

public interface ICreditBureauGateway

{

 void GetCreditScore(CreditBureauRequest quoteRequest, OnCreditReplyEvent

OnCreditResponse, Object ACT);

 void Listen();

}

For example, we can create a mock credit bureau gateway implementation that does not actually
connect to any message queue but rather invokes the specified delegate right inside the
GetCreditScore method. This mock implementation contains the same logic as the actual credit
bureau so the remainder of the loan broker is completely unaware of this switcheroo.

public class MockCreditBureauGatewayImp : ICreditBureauGateway

{

 private Random random = new Random();

 public MockCreditBureauGatewayImp()

 { }

 public void GetCreditScore(CreditBureauRequest quoteRequest, OnCreditReplyEvent

OnCreditResponse, Object ACT)

 {

 CreditBureauReply reply = new CreditBureauReply();

 reply.CreditScore = (int)(random.Next(600) + 300);

 reply.HistoryLength = (int)(random.Next(19) + 1);

 reply.SSN = quoteRequest.SSN;

 OnCreditResponse(reply, ACT);

 }

 public void Listen()

 { }

}

Test the Business Logic with Unit Test Cases

The implementation of the CreditBureau class demonstrated a clean separation of
messaging-related functions (encapsulated in the base class) and the business logic (reduced to a
randomizer in our simple example). In a real-life scenario the business logic would (hopefully) be
somewhat more complex. In that case it pays off to move the getCreditScore and
getCreditHistoryLength methods into a separate class together that does not have any
dependency on the messaging layer (even though it is less visible, inheritance still carries
dependencies from the subclass to the base class and related classes). We can the use a unit test
tool such as nUnit (www.nunit.org) to write test cases without having to worry about messaging.

Provide a 'mock' Implementation of the Messaging Layer

The mock implementation of the ICreditBureauGateway is simple and effective. But it also
replaces all credit bureau gateway-related code so that the class CreditBureauGatewayImp has to be
tested separately. If we want to eliminate the dependency (and the associated performance hit)
on message queues but still execute the code inside the CreditBureauGatewayImp class we can use
a mock implementation of the IMessageReceiver and IMessageSender interfaces. A simple mock
implementation could look like this:

public class MockQueue: IMessageSender, IMessageReceiver

{

 private OnMsgEvent onMsg = new OnMsgEvent(DoNothing);

 public void Send(Message msg){

 onMsg(msg);

 }

 private static void DoNothing(Message msg){

 }

 public OnMsgEvent OnMessage

 {

 get { return onMsg; }

 set { onMsg = value; }

 }

 public void Begin()

 {

 }

 public MessageQueue GetQueue()

 {

 return null;

 }

}

We can see that the Send triggers the onMsg delegate immediately without using any message
queue. To use this mock queue for the credit bureau gateway we would have to make sure to
reply with a message of the correct type. We would not be able to simply pass the request
message back to the reply message. This implementation is not shown here but can be simple if,
for example, we use a canned reply message.

Limitations of This Example

This section reminded us that even a simple messaging system (the loan broker really has to
execute only two steps -- get the credit score and get the best bank quote) can get fairly complex
due to the asynchronous nature and loose coupling between components. However, I still took a
number of shortcuts to make the example fit inside the book. Specifically, the example does not
address the following topics:

• Error Handling
• Transactions
• Thread Safety

The example has no managed mechanism to handle errors. At this point, components simple spit
out messages into the various console windows -- not a suitable solution for a production system.
For a real implementation error messages should be routed to a central console so they can notify
an operator in a unified way. The systems management patterns in the following chapter (e.g.,
the Control Bus address these requirements.

This example does not use transactional queues. For example, if the MessageRouter crashes after
sending 2 out of 4 quote request messages to the banks, some banks will process a quite request
while others will not. Likewise, if the loan broker crashes after it receives all bank quote replies
but before it sends a reply to the client the client will never receive a reply. In a real-life system,
actions like this need to be encapsulated inside transactions so that incoming messages are not
consumed until the corresponding outbound message had been sent.

The loan broker implementation executes only in a single thread and does not worry about
thread safety. For example, the BeginReceive method on an inbound message queue (hidden
away in MessageReceiverGateway) is not called until the processing of the previous message has
been completed. This is just fine for an example application (and a lot faster than the synchronous
implementation) but for a high-throughput environment we would want to use a Message
Dispatcher that manages multiple performer threads.

Summary

This chapter walked us through the implementation of the loan broker application using
asynchronous message queues and MSMQ. I intentionally did not shy away from showing
implementation details in order to bring the real issues inherent in building asynchronous
messaging applications to light. I tried to focus on the design trade-offs more so than the
vendor-specific messaging API so that the example is also valuable for non-C# developers.

This example reminds us of the complexities of implementing even a simple messaging
application. Many things that can be taken for granted in a monolithic application (e.g. invoking
a method) can require a significant amount of coding effort when using asynchronous messaging.
Luckily, the design patterns provide us with a language to describe some of the design trade-offs
without having to descend too deeply into the vendor jargon.

Asynchronous Implementation with TIBCO

ActiveEnterprise

(By Michael J. Rettig)

The previous two implementations of the Loan Broker used integration frameworks that
provided basic Message Channel functionality. For example, both Axis and MSMQ provided APIs
to send messages to or receive messages from a Message Channel while the application had to take
care of pretty much everything else. We chose this type of implementation intentionally to
demonstrate how an integration solution can be built from the ground up, using commonly
available Java or C# libraries.

Many commercial EAI product suites offer substantially more functionality to streamline the
development of integration solutions. These product suites typically include visual development
environments that allow for "drag-drop" configuration of Message Translators and Process
Managers. Many also provide sophisticated system management and metadata management
functions. We chose the TIBCO ActiveEnterprise integration suite for this example
implementation. As with the previous implementations, we focus primarily on design decisions
and trade-offs and only introduce as much product-specific language as is necessary to
understand the solution. Therefore, this section should be useful even if you have not worked

with TIBCO ActiveEnterprise before. If you are interested in detailed product or vendor
information please visit www.tibco.com.

This example implementation also differs in the solution design by using an Auction-style
Scatter-Gather approach. This approach uses a Publish-Subscribe Channel instead of a Recipient List
so that the Loan Broker can send the quote request to any number of banks. This type of
Scatter-Gather pattern performs a dynamic Request/Reply with an unknown number of listeners.
Additionally, the implementation of the Loan Broker component uses the business process
management functionality provided by TIBCO’s Process Manager tool.

Solution Architecture

Our application is a simple bank quote request system. Customers submit quote requests to a
loan broker interface. The loan broker fulfills the request by first obtaining a credit score, then
requesting quotes from a number of banks. Once the loan broker obtains quotes from the banks it
selects the best quote and returns it to the customer (see picture).

Clients of the system expect a synchronous Request-Reply interface to the loan broker – the client
sends a quote request and waits for a reply message from the loan broker. The loan broker in turn
uses a Request-Reply interface to communicate with the credit bureau to obtain credit scores.
Once the initial client request is received, the loan broker has the option to perform asynchronous
operations behind the distributed, synchronous facade. This allows the loan broker to utilize an
auction-style Scatter-Gather with a Publish-Subscribe Channel to acquire the bank quotes from
multiple banks.

TIBCO Loan Broker Solution Architecture

The auction sequence begins by publishing the request for quotes message to the
bank.loan.request Publish-Subscribe Channelso that any interested party can listen for the message
and provide their own rates. The number of banks submitting replies is unknown and can vary
for each quote request. The auction works by opening the auction to the banks, then waiting a
predefined amount of time for response messages on the channel bank.loan.reply. Each time a

bid is received the timeout is reset, giving other banks time to submit another bid if possible. In
this case, the bids of other banks are public, so another bank could actually listen for other bids
and place a counter bid if desired.

The loan broker broadcasts the request for a quote to an unknown number of recipients. This is
quite different from a Recipient List which involves sending the request to a predefined list of
banks. This is reflected in the Aggregator’s Completeness Condition. Instead of waiting for a
response from each bank like the previous implementations, the Aggregator relies solely on a
time-out condition to terminate the auction. The Aggregator simply ignores any responses
received after the auction times out. If no bank replies within the specified interval, the
Aggregator will send response message to the client indicating that no quotes were obtained.

Activity Diagram Describing the Process Manager Behavior

In this implementation, the Content Enricher and Aggregator functions are implemented within the
Process Manager component. As a result, the solution architecture diagram does not describe the
details of the interaction between the components because they are embedded in a single
component. Instead, we need to have a look at the activity diagram that represents the Process
Template definition used by the Process Manager. An initial activity diagram cleanly defines the
role of the loan broker as well as providing the basis for the Process Template. From the diagram,
we can see that the loan broker has several responsibilities. This translates well into a process
diagram which shows graphically, the exact order of events, and decision paths.

The Implementation Toolset

In order to explain the design of our solution, we need to introduce some basic concepts about
the TIBCO product suite. Implementing TIBCO solutions often requires evaluating different tools
for a particular problem. At times, a problem can be solved with several different tools. The trick
is picking the best one. We limit the discussion to only those TIBCO features that are required to
construct the example implementation:

• TIB/RendezVous Transport

• TIB/IntegrationManager Process Manager tool

• TIBCO Repository for Metadata Management

TIB/RendezVous Transport

At the heart of TIBCO's messaging suite is the TIB/Rendezvous transport layer. Rendezvous
provides the messaging mechanism for sending and receiving TIBCO messages on the
"information bus". TIBCO supports a wide range of transports including (but not limited to) JMS,
HTTP, FTP, and email. Rendezvous will provide the underlying transport for the messages in our
example. The transport supports both synchronous and asynchronous messages, as well as
Point-to-Point Channels and Publish-Subscribe Channels. Each channel can be configured for
different service levels:

• Reliable Messaging (RV) - provides high performance, but at the realistic risk of losing
messages.

• Certified messages (RVCM) - at least once delivery
• Transactional messaging (RVTX) - guaranteed once and only once delivery

Similar to the MSMQ examples in this book, TIBCO provides an open API for creating messaging
solutions using Java or C++, and includes a range of tools for simplifying the development
process.

TIB/IntegrationManager Process Manager tool

IntegrationManager is a TIBCO development tool consisting of a rich user interface for designing
workflow solutions, and a Process Manager engine for executing them. The GUI provides an
extensive array of configuration, workflow, and implementation options that are stored in the
TIBCO Repository. TIBCO uses the repository as the central configuration artifact for the system.
It holds all metadata, workflow and custom code.

The workflow component of the solution is an aspect that sets it apart from code level solution.
For the loan broker example, IntegrationManager provides asynchronous and synchronous
messaging, as well as basic workflow including ServerSessionState [EAA] For our purposes, we
can break IntegrationManager into 3 parts: the channel, job creator, and the process diagram.

TIB/IntegrationManager Components

Every process in Integration Manager creates a "job" (or Process Instance) which provides a
central session object for maintaining state. This object includes a slotted environment with get
and put operations for storing objects, as well as utility methods for interacting with the session.
A simple GUI allows TIBCO developers to create Process Definitions (called Process Diagrams in
TIBCO) that specify the sequence of tasks the job executes. Process Definitions resemble UML
style activity diagrams, consisting of tasks, connected by transition lines (see diagram). However,
the diagrams only provide the skeleton; behind each activity (i.e., box on the diagram) is a good
amount of configuration and code. For our example, we require some code for processing the
loans. Integration manager uses ECMAScript (commonly referred to as "JavaScript") as the
underlying scripting language.

TIB/IntegrationManager Process Diagram Example

A typical process diagram includes a series of integration tasks. These include control tasks, such
as forks, sync bars, or decision points, signal tasks to send and receive messages, and execution
tasks such as data translation, routing, and system integration. The basic diagram pictured here
includes two tasks: an ECMAScript task that executes some custom logic, and a signal out task
that publishes a message to a channel. Task transitions can contain logic for selecting a particular
route based upon message contents or other criteria.

TIBCO Repository for Metadata Management

Integration and messaging nearly always requires some form of self-describing data (see
Introduction to Message Transformation). TIBCO defines metadata classes as Active Enterprise (AE)
objects stored in the TIBCO repository. Every AE object sent across a message channel includes a
Format Indicator to indicate the class definition that this message adheres to.

Managing message metadata is an important part of the development process. TIBCO developers
can define the metadata directly within the development environment, can extract it from
external systems such as relational databases (using a Metadata Adapter as described in Channel
Adapter), or import XML Schemas. The metadata provides an explicit contract for objects and
messages in the system. Once the classes are defined in the TIBCO repository, the objects are
available for instantiation and manipulation within ECMA script:

//Instantiation of a TIBCO AE class

var bank = new aeclass.BankQuoteRequest();

bank.CorrelationID = job.generateGUID();

bank.SSN = job.request.SSN;

However, remember that this is a dynamic, scripted environment with limited compile-time type
checking. Changing a metadata definition can easily break another part of your system. Without
proper testing and development practices, message based systems can easily become "add only"
systems, meaning metadata is only added to the system, and never changed for fear of breaking
something.

The Interfaces

The Solution Architecture diagram shows us that the solution requires the following services.

Loan Broker

• Receives the initial request
• Obtains a credit score
• Holds loan auction with banks
• Returns best loan offer to client

Credit Service

• Provides a credit score based upon SSN

Bank(s)

• Submit a quote based upon the credit rating and loan amount

Each service is accessible through an external interface. For each such interface we have to make
the following design decisions:

• Conversation Style: Synchronous vs. Asynchronous
• Quality of Service Level

The conversation styles for the interfaces have been predetermined by the solution architecture.
The loan broker and credit service will both need synchronous interfaces, while the
communication with the banks will be purely asynchronous.

Service levels for messaging solutions can become quite complicated especially given failover
scenarios. Fortunately, the loan example service level resolves to a simple solution. In event of
failure (timeout, dropped messages, down systems), the original request can be resubmitted (the
loan broker as an Idempotent Receiver). Remember that we are only obtaining a quote at this point.
It is not yet a legally binding agreement. Of course, this type of assumption needs to be
documented in the system and understood by all parties involved. For example, the banks need
to know that a quote may be resubmitted a second time. If the banks track customer loan requests
for fraud detection purposes we may have to change the solution to avoid sending duplicate
requests, for example by using Guaranteed Delivery.

Implementing the Synchronous Services

The loan broker system has 2 synchronous interfaces – between the customer and the loan broker
and between the loan broker and the credit bureau. TIBCO implements RPC style messaging
with operations using Request-Reply and Command Message. Essentially, this is a synchronous
wrapper to the underlying TIBCO messaging engine. During the invocation of TIBCO operations,
you can listen to the request and reply messages passing across the bus. The request message is
published on the specified channel (for example customer.loan.request). The message includes a
Return Address that specifies the address of a so-called INBOX channel for the reply. TIBCO
hides the asynchronous details behind an RPC-style programming model. In Integration
Manager, the domain operations such as obtain credit score, etc. are defined as part of the AE
classes and can be invoked from the process modeling tool.

For example, to expose the loan broker as a synchronous interface we must perform several
implementation steps. The implementation of the credit bureau service follows closely to these
same steps.

Define the AE Class Definitions

AE classes define the data format for messages sent across TIB/RendezVous channels. Defining a
class in Integration Manager is quite different from creating a class in your favorite IDE. AE
classes are defined through a series of dialog boxes (see picture) from the
TIB/IntegrationManager IDE. The dialog boxes allow you to select a name for your class, and
then designate fields for the class. The fields can be typed as integers, floats, doubles, or
composed of other AE classes.

Defining an AE Class with Attributes and Operations

Define the AE Operation Definitions

Similar to adding interface methods, operations can be added to an AE class. The parameters and
the return types can be specified in the definition. True to an interface, no implementation is
specified. The implementation is bound later when we use the job creator to bind a channel to a
process instance.

Create a Process Diagram

A process diagram provides the implementation for the operation. The operations implemented
in this example require a return parameter. Unlike method implemented in code, a process
diagram doesn't have a "return" value. Instead, we specify the slot in the job where the return
value will be placed. We designate this in the job creator, and we must remember to properly
assign the value to the job slot in our process diagram. The actual implementation of the process
diagram will be discussed in detail in a later section.

Create a Client/Server Channel to Receive the Requests

The channel allows us to define our transport, message definition, service, and subject. For our
synchronous operations we need a client/server channel. We can specify the AE classes that we
created in step 1. From our initial interface definitions, we chose Rendezvous with reliable
messaging. Configuring these options is just a matter of clicking and selecting the proper options.

Defining Channel Properties

Configure a Job Creator to Instantiate the Process Diagram

The job creator retrieves values from the channel and passes them to the process diagram by
creating a job and initializing its environment slots. Once the job is created, the process diagram
is instantiated. Execution will follow the path defined by the activity diagram. Once the process
finishes, the job creator returns the reply back to the channel. We can see in the job creator dialog
the name of our operation.

Configuring the Job Creator

The Loan Broker Process

With our synchronous services in place, we can implement the loan broker to tie everything
together. The included diagram represents the loan broker process. This process defines the
behavior of the Loan Broker component. In our prior steps, we defined the AE operation, channel,
and job creator to instantiate the process diagram when a client submits a message to the
CreditRequest channel.

Design Considerations

From a design perspective, we need to be very careful as to what is included in the process
diagram. Large, complex diagram quickly become unmanageable. It is critical to create an
effective separation of concerns within the diagrams, avoiding an ugly mixture of business logic
and process logic inside a single process definition. Defining what is process logic and what is
business logic is hard. A good rule of thumb is to think of process logic as external system
interaction. What system do I connect to next? What do I do if the system is not available?
Business logic will typically involve more domain specific language. How do I activate an order?
How do I calculate a credit score? How do I create a quote for a bank loan? Given the complex
nature of business code, a full featured development language is often the best choice for
implementation. Most process management tools, including Integration Manager, will allow you
to integrate directly with Java or another language.

For those familiar with the MVC (Model, View, Controller) concept (see, for example, [POSA],
the implementation can be viewed in a similar context. By simply renaming view to workflow,
our implementation falls into a concise definition.

1. Workflow - A visualized model of the workflow
2. Controller - The process engine that receives events from the message bus, executing the

proper component of the process workflow.
3. Model - The Underlying business code (ECMAScript, JavaScript, Java, J2EE, etc)

The Process Model Implementation

The Loan Broker Process Definition

Our diagram contains a mix of script execution boxes and custom tasks that perform integration
actions. One of the big advantages of modeling processes using a visual process modeling tool is
the fact that the running "code" looks very similar to the UML activity diagram that we used to
design the solution.

Since each task icon can contain actual code or important configuration parameters, we'll walk
through each task and describe it in more detail.

The first box represents an ECMAScript to instantiate an AE object and assign values to the fields.

var credit = new aeclass.CreditBureauRequest();

credit.SSN = job.request.SSN;

job.creditRequest = credit;

The credit request created is needed as a parameter in the next activity which invokes the
synchronous operations call to the credit bureau. The credit bureau is implemented as a separate
process diagram consisting of a single ECMA task that receives the message and returns a credit
score. The synchronous operation implies that the Loan Broker process will wait until a reply
message from the credit bureau arrives.

Once the loan broker receives a reply from the credit bureau, we can see in the diagram that
another AE object needs to be created to publish a quote request to any participating banks. To
implement this function, we'll use the Mapper task that allows us to graphically map data items
from multiple sources. The Mapper is a visual implementation of the Message Translator pattern.
The Mapper task demonstrates one of the advantages of managing metadata. Because
IntegrationManager has access to the metadata defining the structure of each object, the mapper
displays the structure of the source and target objects and allows us to visually map the fields
with a few mouse clicks. A new object is instantiated with the values from the input object. We
use the job object’s generateGUID method to generate a unique Correlation Identifier and assign it to
the Correlation ID field of the bankRequest object. As we will see later, the Correlation ID field is
important to allow us to process more than one loan request at the same time.

The Visual Mapper Task Creates the Bank Request Message

Instead of using the visual Mapper we could have used an ECMAScript task to accomplish the
same function. The equivalent code would look like the following. You can see how we create a
new object of type BankQuoteRequest and assign each field from the source objects:

var bank = new aeclass.BankQuoteRequest();

//Create ID to uniquely identify this transaction.

// We will need this later to filter replies

bank.CorrelationID = job.generateGUID();

bank.SSN = job.request.SSN;

bank.CreditScore = job.creditReply.CreditScore;

bank.HistoryLength = job.creditReply.HistoryLength;

bank.LoanAmount = job.request.LoanAmount;

bank.LoanTerm = job.request.LoanTerm;

job.bankRequest = bank;

Whether to use the visual Mapper Task or an ECMAScript Task to implement a Message
Translator function depends on the type and complexity of a mapping. The Mapper Task can give
us a nice visual view of the connections between source and target object, but can become hard to
read when the objects have many fields. On the other hand, the Mapper includes special
functions that allow us to map repeating fields (i.e. Arrays) with a single line instead of having to
code a loop.

Next, a very simple ECMAScript task instantiates a bid array that will hold the incoming bank
responses. This script contains only a single line:

job.bids = new Array();

The next task is a Signal Out task that publishes the bankRequest object to the bank.loan.request
channel. This is an asynchronous action, so the process immediately transitions to the next step
without waiting for a reply.

The following tasks waits for incoming quote reply messages on the bank.loan.reply channel. If a
message is received within the specified timeout interval, the script task adds the received
message to the bids array:

job.bids[job.bids.length] = job.loanReply;

Once the auction period ends, the Signal In task times out and transitions the process to the final
task. This ECMAScript task implements the Aggregation Algorithm of the Aggregator, selecting
the best quote from all the bids. The code creates a new instance of the LoanQuoteReply, transfers
the SSN and LoanAmount fields from the request object to this reply object, and loops through the
bids array to find the best quote.

var loanReply = new aeclass.LoanQuoteReply();

loanReply.SSN = job.request.SSN;

loanReply.LoanAmount = job.request.LoanAmount;

var bids = job.bids;

for(var i = 0; i < bids.length; i++){

 var item = bids[i];

 if(i == 0 || (item.InterestRate < loanReply.InterestRate)){

 loanReply.InterestRate = item.InterestRate;

 loanReply.QuoteID = item.QuoteID;

 }

}

job.loanReply = loanReply;

The last line of the ECMA script places the loan reply object to be returned to customer into a job
slot . We configured the loan broker job creator to return the loanReply attribute of the job to the
customer as the reply message (see picture). When the process finishes, the job creator pulls the
message found in the loanReply attribute of the job, and returns the value to the client.

Configuring the Job Creator’s Rule Set to Return the Best Quote

Managing Concurrent Auctions

The implementation of the auction provided a few development hurdles. Concurrency adds a
degree of complexity to the problem. For the auction to work, we need to publish an
asynchronous message then wait a specified amount of time for replies. However, if multiple
auctions occur at once, we must ensure that each loan broker only receives the replies they are
concerned about, and not all the replies.

This functionality was implemented using a Correlation Identifier and a Selective Consumer to
discard unrelated messages. Ideally, we would want this filtering to occur at the channel level
and not at the process instance. However, that would require the dynamic creation of channel
subjects at runtime, one for each pending auction. Presently, there are implementation constraints
within Integration Manager that prevent us from using this approach. When a process diagram is
instantiated at runtime, it needs to register all subjects it is listening to. This allows the process
engine to listen for any messages on those subjects and queue them as needed. Queuing prevents
timing bugs due to process diagrams that publish on one subject then transition to another state
to listen for a reply. In an asynchronous world, if the transition takes too long, the reply could be
received before the process diagram gets a chance to subscribe. Therefore, the process diagram
conveniently queues inbound messages, but at the cost of disallowing dynamic subjects. Given
the requirements of the present example, filtering at the process level works perfectly well. The
Correlation Identifier is a unique identifier assigned to each process that is then passed to each
bank process and is included in each reply. A single line of ECMAScript provides the filtering in
the SignalIn task:

(event.msg.CorrelationID == job.bankRequest.CorrelationID)

Execution

With the example in place, we can now run the solution. Running the solution involves starting
the Integration Manager engine. To test the solution, a simple test client is included in the
repository that submits loan requests every 5 seconds. Simple stubs are used for the
implementations of the credit service and the banks. One of the advantages of Publish-Subscribe
Channels is that we can easily listen to all messages on the message bus to inspect the message
flow. We used a simple tool to log all messages to the console. For clarity, we truncated the
message content to show only relevant fields and eliminated the format identification and
tracking information included in each message. We can see from the logs, the times, subjects, and
inboxes of messages. The inboxes are the return addresses for the synchronous services.

tibrvlisten: Listening to subject >

2003-07-12 16:42:30 (2003-07-12 21:42:30.032000000Z):

subject=customer.loan.request,

reply=_INBOX.C0A80164.1743F10809898B4B60.3,

SSN=1234567890 LoanAmount=100000.000000 LoanTerm=360

2003-07-12 16:42:30 (2003-07-12 21:42:30.052000000Z):

subject=credit.loan.request,

reply=_INBOX.C0A80164.1743F10809898B4B60.4,

SSN=1234567890

2003-07-12 16:42:30 (2003-07-12 21:42:30.092000000Z):

subject=bank.loan.request,

SSN=1234567890 CreditScore=345 HistoryLength=456 LoanAmount=100000.000000

CorrelationID="pUQI3GEWK5Q3d-QiuLzzwGM-zzw" LoanTerm=360

2003-07-12 16:42:30 (2003-07-12 21:42:30.112000000Z):

subject=bank.loan.reply,

InterestRate=5.017751 QuoteID="5E0x1K_dK5Q3i-QiuMzzwGM-zzw" ErrorCode=0

CorrelationID="pUQI3GEWK5Q3d-QiuLzzwGM-zzw"

2003-07-12 16:42:30 (2003-07-12 21:42:30.112000000Z):

subject=bank.loan.reply,

InterestRate=5.897514 QuoteID="S9iIAXqgK5Q3n-QiuNzzwGM-zzw" ErrorCode=0

CorrelationID="pUQI3GEWK5Q3d-QiuLzzwGM-zzw"

We see the request message from the test client on the channel customer.loan.request. The
message includes the social security number of the customer as well as the desired loan amount
and term (100,000 Dollars for 360 months). The message specifies the test client's private reply
channel _INBOX.C0A80164.8CC3F0E4FAA97E1EA8.123 as the Return Address so that the loan broker
knows where to send the reply message.

The next message represents the request from the loan broker to the credit service, carrying the
private inbox of the loan broker as the Return Address. The credit service only requires the social
security number. The reply message is not captured by our logging tool because _INBOX
channels are private channels.

After the loan broker receives the credit score, it publishes a message to the bank.loan.request
channel. The two bank stubs in our example immediately reply with one interest rate each. Each
bank also assigns a unique QuoteID to the reply so that the customer can refer back to it later. The
auction period times out in a few seconds. Because we cannot see the reply message from the
loan broker process to the test client we can look in the debug log for the process manager engine
to verify that our test client received the lower interest rate. Within this message we can see the
CorrelationID and the Format Indicator for the class.

reply= class/LoanQuoteReply {

 SSN=1234567890

 InterestRate=5.017751017038945

 LoanAmount=100000.0

 QuoteID=5E0x1K_dK5Q3i-QiuMzzwGM-zzw

}

Conclusion

The solution provides some interesting points for comparison. Visual Workflows can be easy to
view and understand, but just as in code, this relative simplicity can turn into a maze of
confusion as implementations become more complex. The dynamic nature of the Scatter-Gather
allows for a clean decoupling of the pub/sub interface. The loan broker can publish bank loan
requests without any knowledge of the subscribing banks. Similarly, the Aggregator for the replies
doesn't need to know the number of expected replies. The potential downside of this flexibility is
that it can hide errors resulting from incorrect subject naming, developer error, or dropped
messages.

The visual, GUI driven implementation with TIBCO provides a corollary approach to the code
level implementations. While the sheer power and flexibility of code cannot be argued against, a
more graphical environment can greatly simplify very complex tasks. Configuration is a very
large part of integration, and graphical environments work well for this. At times, it may seem
that developers have to choose between writing code and using a vendor development tool.
However, they can often coexist effectively. For instance, you could choose to use Integration
Manager to model integration workflows, and use J2EE session beans to implement domain
logic.

For the sake of brevity, our example was relatively simple, leading to an easy to understand
scenario. Real world implementations are rarely this simple. Rapid development tools can
facilitate faster initial development, but can limit your development options. Process
management tools can help hide the complexities of messaging, allowing developers to focus on

integration tasks without worrying about what happens behind the scenes. However, ignorance
of messaging infrastructure has led to the death of more than one project.

10．Messaging Endpoints

Introduction

In Introduction to Messaging Systems, we discussed Message Endpoint. This is how an application
connects to a messaging system so that it can send and receive messages. As an application
programmer, when you program to a messaging API such as JMS or the System.Messaging
namespace, you’re developing endpoint code. If you are using a commercial middleware
package, most of this coding is already done for you using the libraries and tools provided by the
vendor.

Send and Receive Patterns

Some endpoint patterns apply to both senders and receivers. They concern how the application
relates to the messaging system in general.

Encapsulate the messaging code — In general, an application should not be aware that it is using
Messaging to integrate with other applications. Most of the application’s code should be written
without messaging in mind. At the points where the application integrate with others, there
should be a thin layer of code that performs the application’s part of the integration. When the
integration is implemented with messaging, that thin layer of code that attches the application to
the messaging system is a Messaging Gateway.

Data translation — It’s great when the internal data representation the sender and receiver
applications use are the same, and when the message format uses that same representation as
well. However, this is often not the case. Either the sender and receiver disagree on data format,
or the messages use a different format (usually to support other senders and receivers). In this
situation, use a Messaging Mapper to convert data between the application’s format and the
message’s format.

Externally-controlled transactions — Messaging systems use transactions internally; externally,
by default, each send or receive method call runs in its own transaction. However, message
producers and consumers have the option of using a Transactional Client to control these
transactions externally, which is useful when you need to batch together multiple messages or to
coordinate messaging with other transactional services.

Message Consumer Patterns

Other endpoint patterns only apply to message receivers. Sending messages is easy. There are
issues involved in deciding when a message should be sent, what it should contain, and how to

communicate its intent to the receiver—that’s why we have the Message Construction patterns
(see Introduction to Message Construction)—but once the message is built, sending it is easy.
Receiving messages, on the other hand—that’s tricky. So many of these patterns are about
receiving messages.

An overriding theme in message consumption is throttling, which means the application
controlling the rate at which it consumes messages. As discussed in the Introduction, a potential
problem any server faces is that a high volume of client requests could overload the server. With
Remote Procedure Invocation, the server is pretty much at the mercy of the rate that clients make
calls. Likewise, with Messaging, the server cannot control the rate at which clients send
requests—but the server can control the rate at which it processes those requests. The application
does not have to receive and process the messages as rapidly as they’re delivered by the
messaging system; it can process them at a sustainable pace and let the extras queue up to be
processed in some sort of first come, first serve basis. On the other hand, if the messages are
piling up too much and the server has the resources to process more messages faster, the server
can increase its message consumption throughput using concurrent message consumers. So use
these patterns to let your application control the rate at which it consumes messages.

Many of these patterns come in pairs that represent alternatives. You can design an endpoint one
way or the other. A single application may design some endpoints one way and some endpoints
the other way, but a single endpoint can only implement one alternative. Alternatives from each
pair can be combined, leading to a great number of choices for how to implement a particular
endpoint.

Synchronous or asynchronous consumer — One alternative is whether to use a Polling Consumer
or an Event-Driven Consumer. [JMS11, pp.68-69], [Hapner, p.13], [Dickman, p.29] Polling provides
the best throttling because if the server is busy, it won’t run the code to receive more messages, so
the messages will queue up. Consumers that are event-driven tend to process messages as fast as
they arrive, which could overload the server; but each consumer can only process one message at
a time, so limiting the number of consumers effectively throttles the consumption rate.

Message assignment vs. message grab — Another alternative concerns how a handful of
consumers process a handful of messages. If each consumer gets a message, they can process the
messages concurrently. The simplest approach is Competing Consumers, where one Point-to-Point
Channel has multiple consumers. Each one could potentially grab any message; the messaging
system’s implementation decides which consumer gets a message. If you want to control this
message-to-consumer matching process, use a Message Dispatcher. This is a single consumer that
receives a message but delegates it to a performer for processing. An application can throttle
message load by limiting the number of consumers/performers. Also, the dispatcher in a Message
Dispatcher can implement explicit throttling behavior.

Accept all messages or filter — By default, any message delivered on a Message Channel becomes
available to any Message Endpoint listening on that channel for messages to consume. However,
some consumers may not want to consume just any message on that channel, but only wish to
consume messages of a certain type or description. Such a discriminating consumer can use a

Selective Consumer to describe what sort of message it’s willing to receive. Then the messaging
system will only make messages matching that description available to that receiver.

Subscribe while disconnected — An issue that comes up with Publish-Subscribe Channels: What if
a subscriber was interested in the data being published on a particular channel and will be again,
but is currently disconnected from the network or shut down for maintenance? Will a
disconnected application miss messages published while it is disconnected, even though it has
subscribed? By default, yes, a subscription is only valid while the subscriber is connected. To
keep the application from missing messages published inbetween connections, make it a Durable
Subscriber.

Idempotency — Sometimes the same message gets delivered more than once, either because the
messaging system is not certain the message has been successfully delivered yet, or because the
Message Channel’s quality-of-service has been lowered to improve performance. Message
receivers, on the other hand, tend to assume that each message will be delivered exactly once,
and tend to cause problems when they repeat processing because of repeat messages. A receiver
designed as an Idempotent Receiver handles duplicate messages and prevents them from causing
problems in the receiver application.

Synchronous or asynchronous service — Another tough choice is whether an application should
expose its services to be invoked synchronously (via Remote Procedure Invocation) or
asynchronously (via Messaging). Different clients may prefer different approaches; different
circumstances may require different approaches. Since it’s often hard to choose just one approach
or the other, let’s have both. A Service Activator connects a Message Channel to a synchronous
service in an application so that when a message is received, the service is invoked. Synchronous
clients can simply invoke the service directly; asynchronous clients can invoke the service by
sending a message.

Message Endpoint Themes

Another significant theme in this chapter is difficulty using Transactional Client with other
patterns. Event-Driven Consumer usually cannot externally control transactions properly, Message
Dispatcher must be carefully designed to do so, and Competing Consumers that externally manage
transactions can run into significant problems. The safest bet for using Transactional Client is with
a single Polling Consumer, but that may not be a very satisfactory solution.

Special mention should be made of JMS-style message-driven beans, one type of Enterprise
JavaBeans (EJB). [EJB20, pp.311-326], [Hapner, pp.69-74] An MDB is a message consumer that is
an Event-Driven Consumer, a Transactional Client that supports J2EE distributed (e.g., XAResource)
transactions, and can be dynamically pooled as Competing Consumers, even for a Publish-Subscribe
Channel. This is a difficult and tedious combination to implement in one’s own application code,
but this functionality is provided as a ready-built feature of compatible EJB containers (such as
BEA’s WebLogic and IBM’s WebSphere). (How is the MDB framework implemented? Essentially,
the container implements a Message Dispatcher with a dynamicly-sized pool of reusable

performers, where each performer consumes the message itself using its own session and
transaction.)

Finally, keep in mind that a single Message Endpoint may well combine several different patterns
from this chapter. A group of Competing Consumers may be implemented as Polling Consumers
that are also Selective Consumers and act as a Service Activator on a service in the application. A
Message Dispatcher may be an Event-Driven Consumer and a Durable Subscriber that uses a
Messaging Mapper. Whatever other patterns an endpoint implements, it should also be a
Messaging Gateway. So don’t think of what one pattern to use, think of the combinations. That’s
the beauty of solving the problems with patterns.

So there are a lot of options for making an application into a Message Endpoint. This chapter will
explain what those options are and how to make the best use of them.

Messaging Gateway

An application accesses another system via Messaging.

How do you encapsulate access to the messaging system from the rest of the application?

Most custom applications access the messaging infrastructures through a vendor-supplied API.
While there are many different flavors of such API's, these libraries generally expose similar
functions, such as "open channel", "create message", "send message". While this type of API
allows the application to send any kind of message data across any kind of channel, it is
sometimes hard to tell what the intent of sending the message data is.

Messaging solutions are inherently asynchronous. This can complicate the code to access an
external function over messaging. Instead of calling a method GetCreditScore that returns the
numeric credit score, the application has to send the request message and expect the reply
message to arrive at a later time (see Request-Reply). The application developer may prefer the
simple semantics of a synchronous function as opposed dealing with incoming message events.

Loose coupling between applications provides architectural advantages, such as resilience to
minor changes in message formats (i.e., adding fields). Usually, the loose coupling is achieved by
using XML documents or other data structures that are not strongly typed like a Java or C# class.
Coding against such structures is tedious and error-prone because there is no compile-type
support to detect misspelled field names or mismatching data types. Therefore, we often gain the
flexibility in data formats at the expense of application development effort.

Sometimes, a simple logical function to be executed via messaging requires more than one
message to be sent. For example, a function to get customer information may in reality require
multiple messages, one to get the address, another to get the order history and yet another to get
personal information. Each of these messages my be processed by a different system. We would
not want to clutter the application code with all the logic required to send and receive three

separate message. We could take some of the burden off the application by using a Scatter-Gather
that receives a single message, sends three messages separate messages and aggregates them
back into a single reply message. However, not always do we have the luxury of adding this
function to the messaging middleware.

Use a Messaging Gateway, a class than wraps messaging-specific method calls and exposes
domain-specific methods to the application.

The Messaging Gateway encapsulates messaging-specific code (e.g., the code required to send or
receive a message) and separates it from the rest of the application code. This way, only the
Messaging Gateway code knows about the messaging system; the rest of the application code does
not. The Messaging Gateway exposes a business function to the rest of the application so that
instead of requiring the application to set properties like
Message.MessageReadPropertyFilter.AppSpecific, a Messaging Gateway exposes methods such as
GetCreditScore that accept strongly typed parameters just like any other method. A Messaging
Gateway is a messaging-specific version of the more general Gateway pattern [EAA].

A Gateway Eliminates Direct Dependencies Between the Application and the Messaging Systems

A Messaging Gateway sits between the application and the messaging system and provides a
domain-specific API to the application (see picture). Because the application doesn't even know
that it's using a messaging system, we can swap out the gateway with a different implementation
that uses another integration technology, such as remote procedure calls or Web services.

Many Messaging Gateways send a message to another component and expect a reply message
(Request-Reply). Such a Messaging Gateway can be implemented in two different ways:

• Blocking (Synchronous) Messaging Gateway
• Event-Driven (Asynchronous) Messaging Gateway

A blocking Messaging Gateways sends out a message and waits for the reply message to arrive
before returning control to the application. When the gateway receives the reply, it processes the
message and returns the result to the application (see sequence diagram).

Blocking (Synchronous) Messaging Gateway

A blocking Messaging Gateway encapsulates the asynchronous nature of the messaging interaction,
exposing a regular synchronous method to the application logic. Thus, the application is unaware
of any asynchronicity in the communication. For example, a blocking gateway may expose the
following method:

int GetCreditScore(string SSN);

While this approach makes writing application code against the Messaging Gateway very simple,
it can also lead to poor performance because the application ends up spending most of its time
sitting around and waiting for reply messages while it could be performing other tasks.

An event-driven Messaging Gateway exposes the asynchronous nature of the messaging layer to
the application. When the application makes the domain-specific request to the Messaging
Gateway it provides a domain-specific callback for the reply. Control returns immediately to the
application. When the reply message arrives, the Messaging Gateway processes it and then invokes
the callback (see sequence diagram).

Event-Driven (Asynchronous) Messaging Gateway

For example, in C# using delegates, the Messaging Gateway could expose the following public
interface:

delegate void OnCreditReplyEvent(int CreditScore);

void RequestCreditScore(string SSN, OnCreditReplyEvent OnCreditResponse);

The method RequestCreditScore accepts an additional parameter that specifies the callback
method to be invoked when the reply message arrives. The callback method has a parameter
CreditScore so that the Messaging Gateway can pass the results to the application. Depending on
the programming language or platform, the callback can be accomplished with function pointers,
object references or delegates (as shown here). Note that despite the event-driven nature of this
interface there is no dependency at all on a specific messaging technology.

Alternatively, the application can periodically poll to see whether the results arrived. This
approach makes the higher-level interface simple without introducing blocking, essentially
employing the Half-sync/Half-async pattern [POSA2]. This pattern describes the use of buffers
that store incoming messages so that the application can poll at its convenience to see whether a
message has arrived.

One of the challenges of using an event-driven Messaging Gateway is that the Messaging Gateway
requires the application to maintain state between the request method and the callback event (the
call stack takes care of this in the blocking case). When the Messaging Gateway invokes the
callback event into the application logic, the application needs to be able to correlate the reply
with the request it made earlier so that it can continue processing the correct thread of execution.

The Messaging Gateway can make it easier for the application to maintain state if it allows the
application to pass a reference to an arbitrary set of data to the request method. The Messaging
Gateway will then pass this data back to the application with the callback. This way, the
application has all necessary data available when the asynchronous callback is invoked. This type
of interaction is commonly called ACT (Asynchronous Completion Token) [POSA2].

The public interface of an event-driven Messaging Gateway that supports an ACT may look like
this:

delegate void OnCreditReplyEvent(int CreditScore, Object ACT);

void RequestCreditScore(string SSN, OnCreditReplyEvent OnCreditResponse, Object ACT);

While supporting an ACT is a very convenient feature for the application, it does introduce the
danger of a memory leak if the Messaging Gateway maintains a reference to an object but the
expected reply message never arrives.

Chaining Gateways

It can be beneficial to create more than one layer of Messaging Gateways. The "lower-level"
Messaging Gateway can simply abstract the syntax of the messaging system but maintain generic
messaging semantics, e.g. "SendMessage". This Messaging Gateway can help shield the rest of the
application when the enterprise changes messaging technologies, e.g. from MSMQ to Web
Services. We wrap this basic Messaging Gateway with an additional Messaging Gateway that
translates the generic messaging API into a narrow, domain-specific API, such as GetCreditScore.
We use this configuration in the MSMQ implementation of the Loan Broker example (see
Asynchronous Implementation with MSMQ, figure below).

A Chain of Gateways Provides Different Levels of Abstraction

Dealing With Messaging Exceptions

Besides making coding the application simpler, the intent of the Messaging Gateway is also to
eliminate dependencies of the application code on specific messaging technologies. This is easy to
do by wrapping any messaging-specific method calls behind the Messaging Gateway interface.
However, most messaging layers tend to throw messaging-specific exceptions, e.g. the
InvalidDestinationException exception raised by JMS. If we really want to make our application

code independent from the messaging library, the Messaging Gateway has to catch any messaging
specific exception and throw an application-specific (or a generic) exception instead. This code
can get a little tedious, but it is very helpful if we ever have to switch the underlying
implementations, e.g. from JMS to Web services.

Generating Gateways

In many situations, we can generate the Messaging Gateway code from metadata exposed by the
external resource. This is common on the world of Web services. Almost every vendor or
open-source platform provides a tool such as wsdl2java that connects to the Web Service
Description Language (WSDL) exposed by an external web service. The tool generates Java (or
C# or whatever language you need) classes that encapsulate all the nasty SOAP stuff and expose
a simple function call. We created a similar tool that can read message schema definitions off the
TIBCO repository and creates Java source code for a class that mimics the schema definition. This
allows application developers to send correctly-typed TIBCO ActiveEnterprise messages without
having to learn the TIBCO API.

Using Gateways for Testing

Messaging Gateways make great testing vehicles. Because we wrapped all the nasty messaging
code behind a narrow, domain specific interface, we can easily create a dummy implementation
of this interface. We simply separate interface and implementation and provide two
implementations: one "real" implementation that accesses the messaging infrastructure and a
"fake" implementation for testing purposes (see picture). The "fake" implementations acts as a
Service Stub (see [EAA]) and allows us to test the application without any dependency on
messaging. A Service Stub can also be useful to debug an application that uses an event-driven
Messaging Gateway. For example, a simple test stub for an event-driven Messaging Gateway can
simply invoke the callback (or delegate) right from the request method, effectively executing both
the request and the response processing in one thread. This can simplify step-by-step debugging
enormously.

Gateways as a Testing Tool

Example: Asynchronous Loan Broker Gateway in MSMQ

This example shows a piece of the Loan Broker example introduced in the Composed Messaging
Interlude (see Asynchronous Implementation with MSMQ).

public delegate void OnCreditReplyEvent(CreditBureauReply creditReply, Object ACT);

internal struct CreditRequestProcess

{

 public int CorrelationID;

 public Object ACT;

 public OnCreditReplyEvent callback;

}

internal class CreditBureauGateway

{

 protected IMessageSender creditRequestQueue;

 protected IMessageReceiver creditReplyQueue;

 protected IDictionary activeProcesses = (IDictionary)(new Hashtable());

 protected Random random = new Random();

 public void Listen()

 {

 creditReplyQueue.Begin();

 }

 public void GetCreditScore(CreditBureauRequest quoteRequest, OnCreditReplyEvent

OnCreditResponse, Object ACT)

 {

 Message requestMessage = new Message(quoteRequest);

 requestMessage.ResponseQueue = creditReplyQueue.GetQueue();

 requestMessage.AppSpecific = random.Next();

 CreditRequestProcess processInstance = new CreditRequestProcess();

 processInstance.ACT = ACT;

 processInstance.callback = OnCreditResponse;

 processInstance.CorrelationID = requestMessage.AppSpecific;

 creditRequestQueue.Send(requestMessage);

 activeProcesses.Add(processInstance.CorrelationID, processInstance);

 }

 private void OnCreditResponse(Message msg)

 {

 msg.Formatter = GetFormatter();

 CreditBureauReply replyStruct;

 try

 {

 if (msg.Body is CreditBureauReply)

 {

 replyStruct = (CreditBureauReply)msg.Body;

 int CorrelationID = msg.AppSpecific;

 if (activeProcesses.Contains(CorrelationID))

 {

 CreditRequestProcess processInstance =

(CreditRequestProcess)(activeProcesses[CorrelationID]);

 processInstance.callback(replyStruct, processInstance.ACT);

 activeProcesses.Remove(CorrelationID);

 }

 else { Console.WriteLine("Incoming credit response does not match any

request"); }

 }

 else

 { Console.WriteLine("Illegal reply."); }

 }

 catch (Exception e)

 {

 Console.WriteLine("Exception: {0}", e.ToString());

 }

 }

}

You will notice that the public method GetCreditScore and the public delegate
OnCreditReplyEvent make no references to messaging at all. This implementation allows the
calling application to pass an arbitrary object reference as an Asynchronous Completion Token.
The CreditBureauGateway stores this object reference in a dictionary indexed by the Correlation
Identifier of the request message. When the reply message arrives, the CreditBureauGateway can
retrieve the data that was associated with the outbound request message. The calling application
does not have to worry about how the messages are correlated.

Example: Synchronous Gateway in JMS

Related patterns: Scatter-Gather, Asynchronous Implementation with MSMQ, Correlation Identifier,
Messaging, Request-Reply

Messaging Mapper

When integrating applications using messaging, the data inside a message is often derived from
domain objects inside the integrated applications. If we use a Document Message, the message
itself may directly represent one or domain objects. If we use a Command Message, some of the
data fields associated with the command are likely to be extracted from domain objects as well.
There are some distinct differences between messages and objects. For example, most objects rely
on associations in the form of object references and inheritance relationships. Many messaging
infrastructures do not support these concepts because they have to be able to communicate with a
range of applications, some of which may not be object-oriented at all.

How do you move data between domain objects and the messaging infrastructure while
keeping the two independent of each other?

Why can't we make our messages look exactly like the domain objects and make the problem go
away? In many cases, we are not in control of the message format because it is defined by a
Canonical Data Model or a common messaging standard (e.g. ebXML). We could still publish the
message in a format that corresponds to the domain object and use a Message Translator inside the
messaging layer to make the necessary transformation to the common message format. This
approach is commonly used by adapters to third-party systems that do not allow transformation
inside the application (e.g., a database adapter).

Alternatively, the domain can create and publish a message in the required format without the
need for a separate Message Translator. This option most likely results in better performance
because we do not publish an intermediate message. Also, if our domain model contains many
small objects it may be beneficial to combine them into a single message first to simplify routing
and improve efficiency inside the messaging layer. Even if we can afford the additional
transformation step, we will run into limitations if we want to create messages that mimic
domain objects. The shortcoming of this approach is that the domain must know the message
format, which makes domain maintenance difficult if multiple formats can be used or if the
format changes.

Most messaging infrastructures support the notion of a "Message" object as part of the
application programming interface (API). This message object encapsulates the data to be sent
over a channel. In most cases, this message object can contain only scalar data types such as
strings, numbers, or dates, but does not support inheritance or object references. This is one of the
key differences between RPC-style communications (i.e. RMI) and asynchronous messaging
systems. Let's assume we send an asynchronous message containing an object reference to a

component. In order to process the message, the component would have to resolve the object
reference. It would do this by requesting the object from the message source. However,
request-reply interaction would defeat some of the motivations of using asynchronous messaging
in the first place, i.e. loose coupling between components. Worse yet, by the time the
asynchronous message is received by the subscriber, the referenced object may no longer exist in
the source system.

One attempt to resolve the issue of object references is to traverse the dependency tree of an
object and include all dependent objects in the message. For example, if an Order object references
five OrderItem objects, we would include the five objects in the message. This will ensure that the
receiver has access to all data references by the "root" object. If we use a fine-grained domain
object model in which many objects are interrelated, messages can quickly explode in size. It
would desirable to have more control over what is included in a message and what is not.

Let's assume for a moment that our domain object is self-contained and does not have any
references to other objects. We still cannot simply stick the whole domain object into a message as
most messaging infrastructures do not support objects because they have to be language
independent (the JMS interface ObjectMessage and the Message class inside .NET's
System.Messaging namespace are exceptions since these messaging systems are either language
(Java) or platform (.NET CLR) specific). We could think of serializing the object into a string and
store it into a string field called "data," which is supported by pretty much every messaging
system. However, this approach has disadvantages as well. First, a Message Router would not be
able to use object properties for routing purposes because this string field would be 'opaque' to
the messaging layer. It would also make testing and debugging difficult, because we would have
to decipher the contents of the 'data' field. Also, constructing all messages so that they just
contain a single string field would not allow us to route messages by message type because to the
infrastructure all messages look the same. It would also be difficult to verify the correct format of
the message because the messaging infrastructure would not verify anything inside the "data"
field. Lastly, we would not be able to use the serialization facilities provided by the language
run-time libraries because these presentation are usually not compatible across languages. So we
would have to write our own serialization code.

Some messaging infrastructures now support XML fields inside messages so that we could
serialize objects into XML. This can alleviate some of the disadvantages because the messages are
easier to decipher now and some messaging layers can access elements inside and XML string
directly. However, we now have to deal with quite verbose messages and limited data type
validation. Plus, we still have to create code that translates an object into XML and back.
Depending on the programming language we use, this could be quite complex, especially if we
use an older language that does not support reflection.

We are well advised to separate this mapping code from the domain object for a number of
reasons. First of all, we may not want to blend code that concerns itself with low-level language
features with application logic. In many cases, we will have a group of programmers dedicated to
working with the messaging layer, while another group focuses on the domain logic. Sticking
both pieces of code into one object will make it difficult for the teams to work in parallel.

Second, incorporating mapping code inside the domain object makes the domain object
dependent on the messaging infrastructure because the mapping code will need to make calls
into the messaging API (e.g. to instantiate the Message object). In most cases this dependency is
not desirable because it prevents the reuse of the domain objects in another context that does not
use messaging or uses another vendor's messaging infrastructure. As a result, we would
seriously impede the reusability of the domain objects.

We often see people write "abstraction layers" that wrap the messaging infrastructure API,
effectively making the code that deals with messaging independent from the messaging API.
Such a layer provides a level of indirection because it separates the messaging interface from the
messaging implementation. Therefore, we can reuse the messaging-related code even if we have
to switch to another vendor's messaging layer. All we need to do is implement a new abstraction
layer that translates the messaging interface to the new API. However, this approach does not
resolve the dependency of the domain objects on the messaging layer. The domain objects would
now contain references to the abstracted messaging interface as opposed to the vendor-specific
messaging API. But we still cannot use the domain objects in a context that does not use
messaging.

Many messages are composed of more than one domain object. Since we cannot pass object
references through the messaging infrastructure, it is likely that we need to include fields from
other objects. In some cases, we may include the whole "dependency tree" of all dependent
objects inside one message. Which class should hold the mapping code? The same object may be
part of multiple message types, combined with different objects, so there is no easy answer to this
question.

Create a separate Messaging Mapper that contains the mapping logic between the messaging
infrastructure and the domain objects. Neither the objects nor the infrastructure have
knowledge of the Messaging Mapper's existence.

The Messaging Mapper accesses one or more domain objects and converts them into a message as
required by the messaging channel. It also performs the opposite function, creating or updating
domain objects based on incoming messages. Since the Messaging Mapper is implemented as a
separate class that references the domain object(s) and the messaging layer, neither layer is aware
of the other. The layers don't even know about the Messaging Mapper.

The Messaging Mapper is a specialization of the Mapper pattern defined in [EAA]. It shares some
analogies with the Data Mapper defined in the same book. Anyone who has worked on O-R

(Object-Relational) Mapping strategies will understand the complexities of mapping data
between layers that use different paradigms. The issues inherent in the Messaging Mapper are
similarly complex and a detailed discussion of all possible aspects is beyond the scope of this
book. Many of the Data Source Architectural Patterns in [EAA] make a good read for anyone
concerned with creating a Messaging Mapper layer.

A Messaging Mapper is different from the frequently used concept of an abstraction layer wrapped
around the messaging API. In the case of an abstraction layer, the domain objects do not know
about the messaging API, but they do know about the abstraction layer (the abstraction layer
essentially performs the function of a Gateway (see [EAA]). In the case of a Messaging Mapper, the
objects have no idea whatsoever that we are dealing with messaging.

The intent of a Messaging Mapper is similar to that of a Mediator ([GoF]) which is also used to
separate elements. In the case of a Mediator, though, the elements are aware of the Mediator
whereas neither element is aware of the Messaging Mapper.

If neither the domain objects nor the messaging infrastructure know about the Messaging Mapper
how does it get invoked? In most cases, the Messaging Mapper is invoked through events
triggered either by the messaging infrastructure or the application. Since neither one is
dependent on the Messaging Mapper the event notification can either happen through a separate
piece of code or by making the Messaging Mapper an Observer pattern (see [GoF]). For example, if
we use the JMS API to interface with the messaging infrastructure we can implement the
MessageListener interface to be notified of any incoming messages. Likewise, we can use an
Observer to be notified of any relevant events inside the domain objects and to invoke the
Messaging Mapper. If we have to invoke the Messaging Mapper directly from the application, we
should define a Messaging Mapper interface so that the application does at least not depend on the
Messaging Mapper implementation.

Reducing the Coding Burden

Some Messaging Mapper implementations may contain a lot of repetitive code: get a field from the
domain object and store it in a message object. Go on to the next field and repeat until all fields
are done. This can be pretty tedious and also smells suspiciously like code duplication. We have a
number of tools to help us avoid this tedium. First, we can write generic a Messaging Mapper that
uses reflection to extract fields from a domain object in a generic way. For example, it could
traverse the list of all fields inside the domain object and store it in a field of the same name in the
message object. Obviously, this works only if the field names match. According to our previous
discussions, we need to come up with some way to resolve object references since we cannot
store those in the message object. The alternative is to use a configurable code generator to
generate the Messaging Mapper code. This allows us some more flexibility in the field naming (the
message field name and the domain object field name do not have to match and we can device
clever ways to deal with object references. The downside of code generators is that they can be
difficult to test and debug, but if we make it generic enough we have to write it only once.

Some frameworks, such as Microsoft .NET, feature built-in object serialization of objects into
XML and vice versa and take away of lot of the grunt work involved in object serialization. Even
if the framework does some of the legwork of converting an object into a message, this
conversion is limited to the 'syntactic' level of translation. It might be tempting to just let the
framework do all the work, but it will just create messages that correspond to the domain objects
one-to-one. As we explained earlier, this may not be desirable because the constraints and design
criteria for messages are quite different from those for domain objects. It may make sense to
define a set of 'interface objects' that correspond to the desired messages structure and let the
framework do the conversion between the messages and these objects. The Messaging Mapper
layer will then manage the translation between the true domain objects and the interface objects.
These interface objects bear some resemblance to Data Transfer Objects ([EAA]) even though the
motivations are slightly different.

Mapper vs. Translator

Even if we use a Messaging Mapper it still makes sense to use a Message Translator to translate the
messages generated by the Messaging Mapper into messages compliant with the Canonical Data
Model. This gives us an additional level of indirection. We can use the Messaging Mapper to
resolve issues such as object references and data type conversions and leave structural mappings
to a Message Translator inside the messaging layer. The price we pay for this additional
decoupling is the creation of an additional component and a small performance penalty. Also,
sometimes it is easier to perform complex transformations inside the application's programming
language as opposed to the drag-and-drop 'doodleware' supplied by the integration vendor.

If we use both a Messaging Mapper and a Message Translator we gain an additional level of
indirection between the canonical data format and the domain objects. It has been said that
computer science is the area where every problem can be solved by adding just one more level of
indirection, so does this rule hold true here? The additional indirection gives us the ability to
compensate for changes in the canonical model inside the messaging layer without having to
touch application code. It also allows us to simplify the mapping logic inside the application by
leaving tedious field mappings and data type changes (e.g., a numeric 'ZIP_Code' field to an
alphanumeric 'Postal_Code' field) to the mapping tools of messaging layer that are optimized for
this kind of work. The Messaging Mapper would then primarily deal with the resolution of object
references and the elimination of unnecessary domain object detail. The apparent downside of
the extra level of indirection is that a change in the domain object may now require changes to
both the Messaging Mapper and the Message Translator. If we did manage to generate the
Messaging Mapper code, this issue largely goes away.

Combining Mapper and Message Translator

Example: Messaging Mapper in JMS

The AuctionAggregate class in the Aggregator JMS example acts as a Messaging Mapper between
the JMS messaging system and the Bid class. The methods addMessage and getResultMessage
convert between JMS messages and Bid objects. Neither the messaging system nor the Bid class
have any knowledge of this interaction.

Related patterns: Aggregator, Canonical Data Model, Command Message, Document Message, Message
Router, Message Translator

Transactional Client

A messaging system, by necessity, uses transactional behavior internally. It may be useful for an
external client to be able to control the scope of the transactions that impact its behavior.

How can a client control its transactions with the messaging system?

A messaging system must use transactions internally. A single Message Channel can have multiple
senders and multiple receivers, so the messaging system must coordinate the messages to make
sure senders don’t overwrite each other’s Messages, multiple Point-to-Point Channel receivers don’t
receive the same message, multiple Publish-Subscribe Channel receivers each receive one copy of
each message, etc. To manage all of this, messaging systems internally use transactions to make
sure a message gets added to the channel or not, and gets read from the channel or not.
Messaging systems also have to employ transactions—preferably two-phase, distributed
transactions—to copy a message from the sender’s computer to the receiver’s computer, such that
at any given time, the message is “really” only on one computer or the other.

Message Endpoints sending and receiving messages are transactional, even if they don’t realize it.
The send method that adds a message to a channel does so within a transaction to isolate that
message from any other messages simultaneously being added to or removed from that channel.
Likewise, a receive method also uses a transaction, which prevents other point-to-point receivers
from getting the same message, and even assures that a publish-subscribe receiver won’t read the
same message twice. (Transactions are often described as being ACID: atomic, consistent, isolated,
and durable. Only transactions for Guaranteed Delivery are durable, and a message by definition is
atomic. But all messaging transactions have to be consistent and isolated. A message can’t be sort
of in the channel, it either is or isn’t. And an application’s sending and receiving of messages has
to be isolated from whatever other sending and receiving other threads and applications might
be doing.)

The messaging system’s internal transactions are sufficient and convenient for a client that
simply wants to send or receive a single message. However, an application may need a broader
transaction to coordinate several messages or to coordinate messaging with other resources.
Common scenarios like this include:

• Send-Receive Message Pairs – Receive one message and send another, such as a
Request-Reply scenario or when implementing a message filter such as a Message Router or
Message Translator.

• Message Groups – Send or receive a group of related messages, such as a Message
Sequence.

• Message/Database Coordination – Combine sending or receiving a message with
updating a database, such as with a Channel Adapter. For example, when an application
receives and processes a message for ordering a product, the application will also need to
update the product inventory database. Likewise, the sender of a Document Message may
wish to delete a persisted document, but only when it is sent successfully; the receiver
may want to persist the document before the message is truly considered to be consumed.

• Message/Workflow Coordination – Use a pair of Request-Reply messages to perform a
work item, and use transactions to ensure that the work item isn’t acquired unless the
request is also sent, and the work item isn’t completed or aborted unless the reply is also
received.

Scenarios like these require a larger atomic transaction that involve more than just a single
message and may involve other transactional stores besides the messaging system. A transaction
is required so that if part of the scenario works (receiving the message, for example) but another
part does not (such as updating the database, or sending another message), all parts can be rolled
back as if they never happened, and then the application can try again.

Yet a messaging system’s internal transaction model is insufficient to allow an application to
coordinate handling a message with other messages or other resources. What is needed is a way
for the application to externally control the messaging system’s transactions and combine them
with other transactions in the messaging system or elsewhere.

Use a Transactional Client—make the client’s session with the messaging system transactional
so that the client can specify transaction boundaries.

Both a sender and a receiver can be transactional. With a sender, the message isn’t “really” added
to the channel until the sender commits the transaction. With a receiver, the message isn’t
“really” removed from the channel until the receiver commits the transaction. A sender that uses
explicit transactions can be used with a receiver that uses implicit transactions, and vise versa. A
single channel might have a combination of implicitly and explicitly transactional senders; it
could also have a combination of receivers.

Transactional Receiver Sequence

With a transactional receiver, an application can receive a message without actually removing the
message from the queue. At this point, if the application crashed, when it recovered, the message
would still be on the queue; the message would not be lost. Having received the message, the
application can then process it. Once the application is finished with the message and is certain it
wants to consume it, the application commits the transaction, which (if successful) removes the
message from the channel. At this point, if the application crashed, when it recovered, the
message would no longer be on the channel, so the application had better truly be finished with
the message.

How does controlling a messaging system’s transactions externally help an application
coordinate several tasks? Here’s what the application would do in the scenarios described above:

Send-Receive Message Pairs

• What to do: Start a transaction, receive and process the first message, create and send the
second message, then commit.

• What this does: This keeps the first message from being removed from its channel until
the second message is successfully added to its channel.

• Transaction type: If the two messages are sent via channels in the same messaging
system, the transaction encompassing the two channels is a simple one. However, if the
two channels are managed by two separate messaging systems, such as with a Messaging
Bridge, the transaction will be a distributed one coordinating the two messaging systems.

• Warning: A single transaction only works for the receiver of a request sending a reply.
The sender of a request cannot use a single transaction to send a request and wait for its
reply. If it tries to do this, the request will never really be sent—because the send
transaction isn’t committed—so the reply will never be received.

Message Groups

• What to do: Start a transaction, send or receive all of the messages in the group (such as a
Message Sequence), then commit.

• What this does: When sending, none of the messages in the group will be added to the
channel until they are all successfully sent. When receiving, none of the messages will be
removed from the channel until all are received.

• Transaction type: Since all of the messages are being sent to or received from a single
channel, that channel will be managed by a single messaging system, so the transaction
will be a simple one. Also, in many messaging system implementations, sending a group
of messages in a single transaction ensures that they will be received on the other end of
the channel in the order they were sent.

Message/Database Coordination

• What to do: Start a transaction, receive a message, update the database, then commit. Or
update the database and send a message to report the update to others, then commit.
(This behavior is often implemented by a Channel Adapter.)

• What this does: The message will not be removed unless the database is updated (or the
database change will not stick if the message cannot be sent).

• Transaction type: Since the messaging system and the database each has its own
transaction manager, the transaction to coordinate them will be a distributed one.

Message/Workflow Coordination

• What to do: Use a pair of Request-Reply messages to perform a work item. Start a
transaction, acquire the work item, send the request message, then commit. Or start

another transaction, receive the reply message, complete or abort the work item, then
commit.

• What this does: The work item will not be committed unless the request is sent; the reply
will not be removed unless the work item is updated.

• Transaction type: Since the messaging system and the workflow engine each has its own
transaction manager, the transaction to coordinate them will be a distributed one.

In this way, the application can assure that it will not loose the messages it receives, nor forget to
send a message that it should. If something goes wrong in the middle, the application can roll
back the transaction and try again.

Transactional clients using Event-Driven Consumers may not work as expected. The consumer
typically must commit the transaction for receiving the message before passing the message to
the application. Then if the application examines the message and decides it does not want to
consume it, or if the application encounters an error and wants to rollback the consume action, it
cannot because it does not have access to the transaction. So an event-driven consumer tends to
work the same whether or not its client is transactional.

Messaging systems are capable of participating in a distributed transaction, although some
implementations may not support it. In JMS, a provider can act as an XA resource and participate
in Java Transaction API [JTA] transactions. This behavior is defined by the “XA” classes in the
javax.jms package, particularly javax.jms.XASession, and by the javax.transaction.xa package.
The JMS spec recommends that JMS clients not try to handle distributed transactions directly, so
an application should use the distributed transaction support provided by a J2EE application
server. MSMQ can also participate in an XA transaction; this behavior is exposed in .NET by the
MessageQueue.Transactional property and the MessageQueueTransaction class.

As discussed earlier, transactional clients can be useful as part of other patterns like Request-Reply,
message filters in Pipes and Filters, Message Sequence, and Channel Adapter. Likewise, the receiver
of an Event Message may want to complete processing the event before removing its message
from the channel completely. On the other hand, Transactional Clients do not work well with
Event-Driven Consumers nor Message Dispatchers, can cause problems for Competing Consumers, but
work well with a single Polling Consumer.

Example: JMS Transacted Session

In JMS, a client makes itself transactional when it creates its session. [JMS11, p.64], [Hapner,
pp.64-66]

Connection connection = // Get the connection

Session session =

 connection.createSession(true, Session.AUTO_ACKNOWLEDGE);

Setting the first createSession parameter to true makes the session transactional.

When a client is using a transactional session, it must explicitly commit sends and receives to
make them real.

Queue queue = // Get the queue

MessageConsumer consumer = session.createConsumer(queue);

Message message = consumer.receive();

At this point, the message has only been consumed in the consumer’s transactional view. But to
other consumers with their own transactional views, the message is still available.

session.commit();

Now, assuming that the commit message does not throw any exceptions, the consumer’s
transactional view becomes the message system’s, which now considers the message consumed.

Example: .NET Transactional Queue

In .NET, queues are not transactional by default. So to use a transactional client, the queue must
be made transactional when it is created:

MessageQueue.Create("MyQueue", true);

Once a queue is transactional, each client action (send or receive) on the queue can be
transactional or non-transactional. A transactional receive looks like this:

MessageQueue queue = new MessageQueue("MyQueue");

MessageQueueTransaction transaction =

 new MessageQueueTransaction();

transaction.Begin();

Message message = queue.Receive(transaction);

transaction.Commit();

Although the client had received the message, the messaging system did not make the message
unavailable on the queue until the client committed the transaction successfully. [SysMsg]

Example: Tranactional Filter with MSMQ

The following example enhances the basic filter component introduced in Pipes and Filters to use
transactions. This example implements the Send-Receive Message Pair scenario, receiving and
sending a message inside the same transaction. We really have to add only a few lines of code to
make the filter transactional. We use a variable of type MessageQueueTransaction to manage the
transaction. We open a transaction before we consume the input smessage and commit after we
publish the output message. If any exception occurs we abort the transaction which rolls back all

message consumption and publication actions and returns the input message to the queue to be
available to other queue consumers.

public class TransactionalFilter

{

 protected MessageQueue inputQueue;

 protected MessageQueue outputQueue;

 protected Thread receiveThread;

 protected bool stopFlag = false;

 public TransactionalFilter (MessageQueue inputQueue, MessageQueue outputQueue)

 {

 this.inputQueue = inputQueue;

 this.inputQueue.Formatter = new System.Messaging.XmlMessageFormatter(new

String[] {"System.String,mscorlib"});

 this.outputQueue = outputQueue;

 }

 public void Process()

 {

 ThreadStart receiveDelegate = new ThreadStart(this.ReceiveMessages);

 receiveThread = new Thread(receiveDelegate);

 receiveThread.Start();

 }

 private void ReceiveMessages()

 {

 MessageQueueTransaction myTransaction = new MessageQueueTransaction();

 while (!stopFlag)

 {

 try

 {

 myTransaction.Begin();

 Message inputMessage = inputQueue.Receive(myTransaction);

 Message outputMessage = ProcessMessage(inputMessage);

 outputQueue.Send(outputMessage, myTransaction);

 myTransaction.Commit();

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message + " - Transaction aborted ");

 myTransaction.Abort();

 }

 }

 }

 protected virtual Message ProcessMessage(Message m)

 {

 Console.WriteLine("Received Message: " + m.Body);

 return m;

 }

}

How do we verify that our Transactional Client works as intended? We subclass the basic
TransactionalFilter with the aptly named class RandomlyFailingFilter. For each consumed
message, this filter draws a random number between 0 and 10. If the number is less than 3, it
throws an an arbitrary exception (ArgumentNullException seemed convenient enough for an
example). If we implemented this filter on top of our basic, non-transactional filter described in
Pipes and Filters, we would lose about one in three messages.

public class RandomlyFailingFilter : TransactionalFilter

{

 Random rand = new Random();

 public RandomlyFailingFilter(MessageQueue inputQueue, MessageQueue outputQueue) :

base (inputQueue, outputQueue) { }

 protected override Message ProcessMessage(Message m)

 {

 string text = (string)m.Body;

 Console.WriteLine("Received Message: " + text);

 if (rand.Next(10) < 3)

 {

 Console.WriteLine("EXCEPTION");

 throw (new ArgumentNullException());

 }

 if (text == "end")

 stopFlag = true;

 return(m);

 }

}

To make sure that we do in fact not lose any messages with the transactional version we rigged
up a really simple test harness that publishes a sequence of messages to the input queue and
makes sure that it can receive all messages in the correct order from the output queue. It is
important to remember that the output messages remain in sequence only if we run a single

instance of the transactional filter. If we run multiple filters in parallel, messages can (and will)
get out of order (see Resequencer.

public void RunTests()

{

 MessageQueueTransaction myTransaction = new MessageQueueTransaction();

 for (int i=0; i < messages.Length; i++)

 {

 myTransaction.Begin();

 inQueue.Send(messages[i], myTransaction);

 myTransaction.Commit();

 }

 for (int i=0; i < messages.Length; i++)

 {

 myTransaction.Begin();

 Message message = outQueue.Receive(new TimeSpan(0,0,3), myTransaction);

 myTransaction.Commit();

 String text = (String)message.Body;

 Console.Write(text);

 if (text == messages[i])

 Console.WriteLine(" OK");

 else

 Console.WriteLine(" ERROR");

 }

 Console.WriteLine("Hit enter to exit");

 Console.ReadLine();

}

Related patterns: Channel Adapter, Competing Consumers, Document Message, Event-Driven
Consumer, Event Message, Guaranteed Delivery, Message, Message Channel, Message Dispatcher,
Message Endpoint, Message Router, Message Sequence, Message Translator, Messaging Bridge, Pipes and
Filters, Point-to-Point Channel, Polling Consumer, Publish-Subscribe Channel, Request-Reply,
Resequencer

Polling Consumer

An application needs to consume Messages, but it wants to control when it consumes each
message.

How can an application consume a message when the application is ready?

Message consumers exit for one reason—to consume messages. The messages represent work
that needs to be done, so the consumer needs to consume those messages and do the work.

But how does the consumer know when a new message is available? The easiest approach is for
the consumer to repeatedly check the channel to see if a message is available. When a message is
available, it consumes the message, and then goes back to checking for the next one. This process
is called polling.

The beauty of polling is that the consumer can request the next message when it is ready for
another message. So it consumes messages at the rate it wants to, rather than at the rate they
arrive in the channel.

The aplication should use a Polling Consumer, one that explicitly makes a call when it wants to
receive a message.

This is also known as a synchronous receiver, because the receiver thread blocks until a message
is received. We call it a Polling Consumer because the receiver polls for a message, processes it,
then polls for another. As a convenience, messaging API’s usually provide a receive method that
blocks until a message is delivered, in addition to methods like receiveNoWait() and Receive(0)
that return immediately if no message is available. This difference is only apparent when the
receiver is polling faster than messages are arriving.

A Polling Consumer is an object that an application uses to receive messages by explicitly
requesting them. When the application is ready for another message, it polls the consumer, which
in turn gets a message from the messaging system and returns it. (How the consumer gets the
message from the messaging system is implementation-specific and may or may not involve
polling. All the application knows is that it doesn’t get the message until it explicitly asks for
one.)

Polling Consumer Sequence

When the application polls for a message, the consumer blocks until it gets a message to return
(or until some other condition is met, such as a time limit). Once the application receives the
message, it can then process it. Once it is through processing the message and wishes to receive
another, the application can poll again.

By using polling consumers, an application can control how many messages are consumed
concurrently by limiting the number of threads that are polling. This can help keep the receiving
application from being overwhelmed by too many requests; extra messages queue up until the
receiver can process them.

A receiver-application typically uses one thread (at least) per channel that it wishes to monitor,
but it can also use a single thread to monitor multiple channels, to help conserve threads when
monitoring channels that are frequently empty. To poll a single channel, assuming that the thread
has nothing to do until a message arrives, use a version of receive that blocks until a message
arrives. To poll multiple channels with a single thread, or to perform other work while waiting
for a message to arrive, use a version of receive with a timeout or receiveNoWait() so that if one
channel is empty, the thread goes on to check another channel or perform other work.

A consumer that is polling too much or blocking threads for too long can be inefficient, in which
case an Event-Driven Consumer may be more efficient. Multiple Polling Consumers can be
Competing Consumers. A Message Dispatcher can be implemented as a Polling Consumer. A Polling
Consumer can be a Selective Consumer; it can also be a Durable Subscriber. A Polling Consumer can
also be a Transactional Client so that the consumer can control when the message is actually
removed from the channel.

Example: JMS Receive

In JMS, a message consumer uses MessageConsumer.receive to consume a message synchronously.
[JMS11, p.69], [Hapner, p.21]

MessageConsumer has three different receive methods:

1. receive() – Blocks until a message is available, and then returns it.

2. receiveNoWait() – Checks once for a message, and returns it or null.

3. receive(long) – Blocks either until a message is available and returns it, or until the time-out expires and

returns null.

For example, the code to create a consumer and receive a message is very simple:

Destination dest = // Get the destination

Session session = // Create the session

MessageConsumer consumer = session.createConsumer(dest);

Message message = consumer.receive();

Example: .NET Receive

In .NET, a consumer uses MessageQueue.Receive to consume a message synchronously. [SysMsg]

A MessageQueue client has several variations of receive. The two simplest are:

1. Receive() – Blocks until a message is available, and then returns it.

2. Receive(TimeSpan) – Blocks either until a message is available and returns it, or until the time-out expires

and throws MessageQueueException.

The code to receive a message from an existing queue is quite simple:

MessageQueue queue = // Get the queue

Message message = queue.Receive();

Related patterns: Competing Consumers, Durable Subscriber, Event-Driven Consumer, Message,
Message Dispatcher, Selective Consumer, Transactional Client

Event-Driven Consumer

An application needs to consume Messages as soon as they’re delivered.

How can an application automatically consume messages as they become available?

The problem with Polling Consumers is that when the channel is empty, the consumer blocks
threads and/or consumes process time while polling for messages that are not there. Polling
enables the client to control the rate of consumption, but wastes resources when there’s nothing
to consume.

Rather than continuously asking the channel if it has messages to consume, it would be better if
the channel could tell the client when a message is available. For that matter, instead of making
the consumer poll for the message to get the message, just give the message to the consumer as
soon as the message becomes available.

The application should use an Event-Driven Consumer, one that is automatically handed
messages as they’re delivered on the channel.

This is also known as an asynchronous receiver, because the receiver does not have a running
thread until a callback thread delivers a message. We call it an Event-Driven Consumer because the
receiver acts like the message delivery is an event that triggers the receiver into action.

An Event-Driven Consumer is an object that is invoked by the messaging system when a message
arrives on the consumer’s channel. The consumer passes the message to the application through a
callback in the application’s API. (How the messaging system gets the message is
implementation-specific and may or may not be event-driven. All the consumer knows is that it
can sit dormant with no active threads until it gets invoked by the messaging system passing it a
message.)

An Event-Driven Consumer is invoked by the messaging system, yet it invokes an
application-specific callback. To bridge this gap, the consumer has an application-specific
implementation that conforms to a known API defined by the messaging system.

The code for an Event-Driven Consumer consists of two parts:

1. Initialization – The application creates an application-specific consumer and associates it
with a particular Message Channel. After this code is run once, the consumer is ready to
receive a series of messages.

2. Consumption – The consumer receives a message, which it and the application process.
This code is run once per message being consumed.

Event-Driven Consumer Sequence

The application creates its custom consumer and associates it with the channel. Once the
consumer is initialized, it (and the application) can then go dormant, with no running threads,
waiting to be invoked when a message arrives.

When a message is delivered, the messaging system calls the consumer’s message-received-event
method and passes in the message as a parameter. The consumer passes the message to the
application using the application’s callback API. The application now has the message and can
process it. Once the application finishes processing the message, it and the consumer can then go
dormant again until the next message arrives. Typically, a messaging system will not run
multiple threads through a single consumer, so the consumer can only process one message at a
time.

Event-Driven Consumers automatically consume messages as they become available. For more
fine-grained control of the consumption rate, use a Polling Consumer. Event-Driven Consumers can
be Competing Consumers. A Message Dispatcher can be implemented as a Event-Driven Consumer. A
Event-Driven Consumer can be a Selective Consumer; it can also be a Durable Subscriber. Transactional
Clients may not work as well with event-driven consumers as they do with polling consumers
(see the JMS example).

Example: JMS MessageListener

In JMS, an Event-Driven Consumer is a class that implements the MessageListener interface.
[Hapner, p.22] This interface declares a single method, onMessage(Message). The consumer
implements onMessage to process the message. Here is an example of a JMS performer:

public class MyEventDrivenConsumer implements MessageListener {

 public void onMessage(Message message) {

 // Process the message

 }

}

The initializer part of an Event-Driven Consumer creates the desired performer object (which is a
MessageListener instance) and associates it with a message consumer for the desired channel:

Destination destination = // Get the destination

Session session = // Create the session

MessageConsumer consumer = session.createConsumer(destination);

MessageListener listener = new MyEventDrivenConsumer();

consumer.setMessageListener(listener);

Now, when a message is delivered to the destination, the JMS provider will call
MyEventDrivenConsumer.onMessage with the message as a parameter.

Note that in JMS, an Event-Driven Consumer that is also a Transactional Client will not work as
expected. Normally a transaction is rolled back when the code in the transaction throws an
exception, but the MessageListener.onMessage signiture does not provide for an exception being
thrown (such as JMSException), and a runtime exception is considered programmer error. If a
runtime exception occurs, the JMS provider responds by delivering the next message, so the
message that caused the exception is lost. [JMS11, p.69], [Hapner, p.22] To successfully achieve
transaction, event-driven behavior, use a message-driven EJB. [EJB20, pp.311-326], [Hapner,
pp.69-71]

Example: .NET ReceiveCompletedEventHandler

With .NET, the performer part of an Event-Driven Consumer implements a method that is a
ReceiveCompletedEventHandler delegate. This delegate method must accept two parameters: an
Object that is the MessageQueue, and a ReceiveCompletedEventArgs that is the arguments from the
ReceiveCompleted event. [SysMsg] The method uses the arguments to get the message from the
queue and process it. Here is an example of a .NET performer:

public static void MyEventDrivenConsumer(Object source,

 ReceiveCompletedEventArgs asyncResult)

{

 MessageQueue mq = (MessageQueue) source;

 Message m = mq.EndReceive(asyncResult.AsyncResult);

 // Process the message

 mq.BeginReceive();

 return;

}

The initializer part of an event-driven client specifies that the queue should run the delegate
method to handle a ReceiveCompleted event:

MessageQueue queue = // Get the queue

queue.ReceiveCompleted +=

 new ReceiveCompletedEventHandler(MyEventDrivenConsumer);

queue.BeginReceive();

Now, when a message is delivered to the queue, the queue will issue a ReceiveCompleted event,
which will run the MyEventDrivenConsumer method.

Related patterns: Competing Consumers, Durable Subscriber, Message, Message Channel, Message
Dispatcher, Selective Consumer, Polling Consumer, Transactional Client

Competing Consumers

An application is using Messaging. However, it cannot process messages as fast as they’re being
added to the channel.

How can a messaging client process multiple messages concurrently?

Messages arrive through a Message Channel sequentially, so the natural inclination of a consumer
is to process them sequentially. However, sequential consumption may be too slow and messages
may pile up on the channel, which makes the messaging system a bottleneck and hurts overall
throughput of the application. This can happen either because of multiple senders on the channel,
because a network outage causes a backlog of messages which are then delivered all at once,
because a receiver outage causes a backlog, or because each message takes significantly more
effort to consume and perform than it does to create and send.

The application could use multiple channels, but one channel might become a bottleneck while
another sits empty, and a sender would not know which one of equivalent channels to use.
Multiple channels would have the advantage, however, of enabling multiple consumers (one per
channel), processing messages concurrently. Even if this worked, though, the number of channels
the application defined would still limit the throughput.

What is needed is a way for a channel to have multiple consumers.

Create multiple Competing Consumers on a single channel so that the consumers can process
multiple messages concurrently.

Competing Consumers are multiple consumers that are all created to receive messages from a
single Point-to-Point Channel. When the channel delivers a message, any of the consumers could
potentially receive it. The messaging system's implementation determines which consumer
actually receives the message, but in effect the consumers compete with each other to be the
receiver. Once a consumer receives a message, it can delegate to the rest of its application to help
process the message. (This solution only works with Point-to-Point Channels; multiple consumers
on a Publish-Subscribe Channel just create more copies of each message.)

Competing Consumers Sequence

Each of the Competing Consumers runs in its own thread so that they all can consume messages
concurrently. When the channel delivers a message, the messaging system's transactional
controls ensure that only one of the consumers successfully receives the message. While that
consumer is processing the message, the channel can deliver other messages, which other
consumers can concurrently consume and process. The channel coordinates the consumers,
making sure that they each receives a different message; the consumers do not have to coordinate
with each other.

Each consumer processes a different message concurrently, so the bottleneck becomes how
quickly the channel can feed messages to the consumers instead of how long it takes a consumer
to process a message. A limited number of consumers may still be a bottleneck, but increasing the
number of consumers can alleviate that constraint as long as there are available computing
resources.

To run concurrently, each consumer must run in its own thread. For Polling Consumers, this
means that each consumer must have its own thread to perform the polling concurrently. For
Event-Driven Consumers, the messaging system must use a thread per concurrent consumer; that
thread will be used to hand the message to the consumer, and will be used by the consumer to
process the message.

A sophisticated messaging system will detect competing consumers on a channel and internally
provide a Message Dispatcher that ensures that each message is only delivered to a single
consumer. This helps avoid conflicts that would arise if multiple consumers each thought they
were the consumer of a single message. A less-sophisticated messaging system will allow
multiple consumers to attempt to consume the same message. When this happens, whichever
consumer commits its transaction first wins; then the other consumers will not be able to commit
succesfully and will have to roll back their transactions.

A messaging system that allows multiple consumers to attempt consuming the same message can
make a Transactional Client very inefficient. The client thinks it has a message, consumes it,
spends effort processing the message, then tries to commit and cannot (because the message has
already been consumed by a competitor). Frequently performing work just to roll it back hurts
throughput, whereas the point of this solution is to increase throughput. Thus the performance of
competing transactional consumers should be measured carefully; it could vary significantly on
different messaging system implementations and configurations.

Not only can Competing Consumers be used to spread load across multiple consumer threads in a
single application; they can also spread the consumption load across multiple applications. This
way, if one application cannot consume messages fast enough, multiple consumer
applications--perhaps with each employing multiple consumer threads--can attack the problem.
The ability to have multiple applications running on multiple computers using multiple threads
to consume messages provides virtually unlimited message processing capacity, where the only
limit is the messaging system's ability to deliver messages from the channel to the consumers.

The coordination of competing consumers depends on each messaging system’s implementation.
If the client wants to implement this coordination itself, it should use a Message Dispatcher.
Competing Consumers can be Polling Consumers, Event-Driven Consumers, or a combination thereof.
Competing Transactional Clients can waste significant effort processing messages whose receive
operations do not commit successfully and have to be rolled back.

Example: Simple JMS Competing Consumers

This is a simple example of how to implement a competing consumer in Java. An external
driver/manager object (not shown) runs a couple of them. It runs each one in its own thread and
calls stopRunning() to make it stop.

A JMS session must be single-threaded. [JMS11, pp.26-27], [Hapner, p.19] A single session
serializes the order of message consumption. [JMS11, p.60], [Hapner, p.19] So for each competing
consumer to work properly in its own thread, and for the consumers to be able to consume
messages in parallel, each consumer must have its own Session (and therefore its own
MessageConsumer). The JMS specification does not specify the semantics of how concurrent
QueueReceivers (e.g., Competing Consumers) should work, or even require that this approach work
at all. Thus applications which use this technique are not assumed to be portable and may work
differently with different JMS providers. [JMS11, p.65], [Hapner, p.347]

The consumer class implements Runnable so that it can run in its own thread; this allows the
consumers to run concurrently. All of the consumers share the same Connection but each creates
its own Session, which is important since each session can only support a single thread. Each
consumer repeatedly receives a message from the queue and processes it.

import javax.jms.Connection;

import javax.jms.Destination;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.MessageConsumer;

import javax.jms.Session;

import javax.naming.NamingException;

public class CompetingConsumer implements Runnable {

 private int performerID;

 private MessageConsumer consumer;

 private boolean isRunning;

 protected CompetingConsumer() {

 super();

 }

 public static CompetingConsumer newConsumer(int id, Connection connection,

String queueName)

 throws JMSException, NamingException {

 CompetingConsumer consumer = new CompetingConsumer();

 consumer.initialize(id, connection, queueName);

 return consumer;

 }

 protected void initialize(int id, Connection connection, String queueName)

 throws JMSException, NamingException {

 performerID = id;

 Session session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

 Destination dispatcherQueue = JndiUtil.getDestination(queueName);

 consumer = session.createConsumer(dispatcherQueue);

 isRunning = true;

 }

 public void run() {

 try {

 while (isRunning())

 receiveSync();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 private synchronized boolean isRunning() {

 return isRunning;

 }

 public synchronized void stopRunning() {

 isRunning = false;

 }

 private void receiveSync() throws JMSException, InterruptedException {

 Message message = consumer.receive();

 if (message != null)

 processMessage(message);

 }

 private void processMessage(Message message) throws JMSException,

InterruptedException {

 int id = message.getIntProperty("cust_id");

 System.out.println(System.currentTimeMillis() + ": Performer #" +

performerID + " starting; message ID " + id);

 Thread.sleep(500);

 System.out.println(System.currentTimeMillis() + ": Performer #" +

performerID + " processing.");

 Thread.sleep(500);

 System.out.println(System.currentTimeMillis() + ": Performer #" +

performerID + " finished.");

 }

}

So implementing a simple competing consumer is easy. The main trick is to make the consumer a
Runnable and run it in its own thread.

Related patterns: Event-Driven Consumer, Message, Message Channel, Message Dispatcher, Messaging,
Point-to-Point Channel, Polling Consumer, Publish-Subscribe Channel, Transactional Client

Message Dispatcher

An application is using Messaging. The application needs multiple consumers on a single Message
Channel to work in a coordinated fashion.

How can multiple consumers on a single channel coordinate their message processing?

Multiple consumers on a single Point-to-Point Channel act as Competing Consumers. That's fine
when the consumers are interchangeable, but it does not allow for specializing the consumers so
that certain consumers are better able to consume certain messages.

Multiple consumers on a single Publish-Subscribe Channel won't work as intended. Rather than
distribute the message load, these consumers will duplicate the effort.

Selective Consumers can be used as specialized consumers. However, not all messaging systems
support this feature. Even amongst those that do, they may not support selection based on values
in the body of the message. Their selector value expressions may be too simple to adequately
distinguish amongst the messages, or the performance of repeatedly evaluating those expressions
may be slow. There may be numerous expressions which need to be carefully designed in a
coordinated fashion so that they do not overlap but also do not leave any selector values
unhandled. They may need to implement a default case for selector values that are not handled
by other consumers or that are unexpected.

Datatype Channels can be used to keep different types of messages separate and to enable
consumers to specialize for those message types. But the type system may be too large and varied
to justify creating a separate channel for each type. Or the types may be based on dynamically

changing criteria which are difficult to handle with a static set of channels. The enterprise may
already require a huge number of channels, taxing the messaging system, and multiplying many
of those channels for distinct message types may simply require too many channels.

Each of these problems could be solved if consumers could work together. They could avoid
duplicating work by being aware if another consumer had already processed that work. They
could be specialized; if a consumer got the wrong kind of message for its speciality, it could hand
off the message to another consumer with the right speciality. If an application had too many
channels coming in, it could save channels by having all of its consumers share a single channel;
they'd coordinate to make sure that the right messages went to the right consumers.

Alas, consumers are very independent objects that are difficult to coordinate. Making specialized
consumers general enough to handle any message and hand it off would add a lot of design and
processing overhead to each consumer. They would all have to know about each other so they
could hand off work, and they would all need to know which of the others were busy so as not to
give a consumer a message to process while it's already processing another. Making consumers
work together would radically change the typical consumer design.

The Mediator pattern [GoF] offers some help. A Meditor coordinates a group of objects so that
they don't need to know how to coordinate with each other. What we need for messaging is a
mediator that coordinates the consumers for a channel. Then each consumer could focus on
processing a particular kind of message, and the coordinator could make sure the right message
gets to the right consumer.

Create a Message Dispatcher on a channel that will consume messages from a channel and
distribute them to performers.

A Message Dispatcher consists of two parts:

1. Dispatcher – The object that consumes messages from a channel and distributes each
message to a performer.

2. Performer – The object that is given the message by the dispatcher and processes it.

When a Message Dispatcher receives a message, it obtains a performer and dispatches the message
to the performer to process it. A performer can delegate to the rest of its application to help
process its message. The performer could be newly created by the dispatcher, or could be selected
from a pool of available performers. Each performer can run in its own thread to process
messages concurrently. All performers may be appropriate for all messages, or the dispatcher
may match a message to a specialized performer based on properties of the message.

Message Dispatcher Sequence

When the dispatcher receives a message, it delegates the message to an available performer to
process it. If the performer processes the message using the dispatcher's thread, then the
dispatcher blocks until the performer is finished processing the message. On the other hand, if
the performer processes the message in its own thread, then once the dispatcher starts that thread,
it can immediately start receiving other messages and delegating them to other performers, so
that the messages are processed concurrently. This way, messages can be consumed as fast as the
dispatcher can recieve and delegate them, regardless of how long each message takes to process.

A dispatcher acts as a one-to-many connection between a single channel and a group of
performers. The performers do most of the work; the dispatcher just acts as a matchmaker,
matching each message with an available performer, and does not block as long as the
performers run in their own threads. The dispatcher receives the message and then sends it to a
performer to process it. Because the dispatcher does relatively little work and does not block, it

potentially can dispatch messages as fast as the messaging system can feed them and thus avoids
becoming a bottleneck.

This pattern is a simpler, messaging-specific version of the Reactor pattern [POSA2], where the
message dispatcher is a Reactor and the message performers are Concrete Event Handlers. The
Message Channel acts as the Synchronous Event Demultiplexer, making the messages available to
the dispatcher one at a time. The messages themselves are like Handles, but much simpler. A true
handle tends to be a reference to a resource's data, whereas a message usually contains the data
directly. (However, the message does not have to store the data directly. If a message's data is
stored externally and the message is a Claim Check, then the message contains a reference to the
data, which is more like a Reactor handle.) Different types of handles select different types of
concrete event handlers, whereas a Message Channel is a Datatype Channel, so all of the messages
(handles) are of the same type, so there is typically only one type of concrete event handler.

On the other hand, whereas Datatype Channel designs a channel so that all messages are of the
same type and all consumers process messages of that type, the Reactor pattern points out an
opportunity to use Message Dispatcher to support multiple data types on the same channel and
process them with type-specific performers. Each message must specify its type; the dispatcher
detects the message's type and dispatches it to a type-specific performer for processing. In this
way, a dispatcher with specialized performers can act as an alternative to Datatype Channels and
as a specialized implementation of Selective Consumers.

One difference between Message Dispatcher and Competing Consumers is the ability to distribute
across multiple applications. Whereas a set of competing consumers may be distributed amongst
multiple applications, a set of performers typically all run in the same application as the
dispatcher (even if they run in different threads). If a performer were running in a different
application from its dispatcher, the dispatcher would have to communicate with the performer in
a distributed, Remote Procedure Invocation manner, which is exactly what Messaging intends to
avoid in the first place.

Since a dispatcher is a single consumer, it works fine with both Point-to-Point Channels and
Publish-Subscribe Channels. With point-to-point messaging, a dispacther can be a suitable
alternative to Competing Consumers; this alternative may be preferable if the messaging system
handles multiple consumers badly or if handling of multiple consumers across different
messaging system implementations is inconsistent.

A dispatcher makes the performers work much like Event-Driven Consumers, even though the
dispatcher itself could be event-driven or a Polling Consumer. As such, implementing a dispatcher
as part of a Transactional Client can be difficult. If the client is transactional, ideally the dispatcher
should allow the performer to process a message before completing the transaction. Then, only if
the performer is successful should the dispatcher commit the transaction. If the performer fails to
process the message, the dispatcher should rollback the transaction. Since each performer may
need to rollback its individual message, the dispatcher needs a session for each performer and
must use that performer’s session to receive the performer’s message and complete its transaction.

Since event-driven consumers often do not work well with transactional clients, the dispatcher
should not be an event-driven consumer, but rather should be a polling consumer.

It can be helpful to implement performers as Event-Driven Consumers. In JMS, this means
implementing the performer as a MessageListener. A message listener has one method,
onMessage(Message); it accepts a message and performs whatever processing necessary. This
forms a clean separation between the dispatcher and the performer. Likewise, in .NET, the
performer should be a ReceiveCompletedEventHandler delegate, even though the dispatcher will
not really issue ReceiveCompleted events. However, these event-driven API's may not be
compatible with the API necessary to run a performer in its own thread.

To avoid the effort of implementing your own Message Dispatcher, consider instead using
Competing Consumers on a Datatype Channel, or using Selective Consumers. A Message Dispatcher can
be a Polling Consumer or an Event-Driven Consumer. Message Dispatchers do not make very good
Transactional Clients.

Example: .NET

Usually, a Message Dispatcher dispatches messages to the performers (see the Java example). .NET
provides another option: The dispatcher can use Peek to detect a message and get its message ID,
then dispactch the message ID (not the full message) to the performer. The performer then uses
ReceiveById to consume the particular message it has been assigned. In this way, each performer
can take responsibility not just for processing the message, but for consuming it as well, which
can help with concurrency issues, especially when the consumers are Transactional Clients.

Example: Simple Java Dispatcher

This is a simple example of how to implement a dispatcher and performer in Java. A more
sophisticated dispather implementation might pool several performers, keep track of which ones
are currently available to process messages, and make use of a thread pool. This simple example
skips those details, but does run each performer in its own thread so that they can run
concurrently.

The driver/manager that controls the dispatcher (not shown) will run receiveSync() repeatedly.
Each time, the dispatcher will receive() the next message, instantiate a new Performer instance to
process the message, then start the performer in its own thread.

import javax.jms.Connection;

import javax.jms.Destination;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.MessageConsumer;

import javax.jms.Session;

import javax.naming.NamingException;

public class MessageDispatcher {

 MessageConsumer consumer;

 int nextID = 1;

 protected MessageDispatcher() {

 super();

 }

 public static MessageDispatcher newDispatcher(Connection connection, String

queueName)

 throws JMSException, NamingException {

 MessageDispatcher dispatcher = new MessageDispatcher();

 dispatcher.initialize(connection, queueName);

 return dispatcher;

 }

 protected void initialize(Connection connection, String queueName)

 throws JMSException, NamingException {

 Session session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

 Destination dispatcherQueue = JndiUtil.getDestination(queueName);

 consumer = session.createConsumer(dispatcherQueue);

 }

 public void receiveSync() throws JMSException {

 Message message = consumer.receive();

 Performer performer = new Performer(nextID++, message);

 new Thread(performer).start();

 }

}

The Performer must implement Runnable so that it can run in its own thread. The runnable's run()
method simply calls processMessage(). When this is complete, the performer becomes eligable for
garbage collection.

import javax.jms.JMSException;

import javax.jms.Message;

public class Performer implements Runnable {

 private int performerID;

 private Message message;

 public Performer(int id, Message message) {

 performerID = id;

 this.message = message;

 }

 public void run() {

 try {

 processMessage();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 private void processMessage() throws JMSException, InterruptedException {

 int id = message.getIntProperty("cust_id");

 System.out.println(System.currentTimeMillis() + ": Performer #" +

performerID + " starting; message ID " + id);

 Thread.sleep(500);

 System.out.println(System.currentTimeMillis() + ": Performer #" +

performerID + " processing.");

 Thread.sleep(500);

 System.out.println(System.currentTimeMillis() + ": Performer #" +

performerID + " finished.");

 }

}

So implementing a simple dispatcher and performer is easy. The main trick is to make the
performer a Runnable and run it in its own thread.

Related patterns: Competing Consumers, Datatype Channel, Remote Procedure Invocation,
Event-Driven Consumer, Message Channel, Selective Consumer, Messaging, Point-to-Point Channel,
Polling Consumer, Publish-Subscribe Channel, Claim Check, Transactional Client

Selective Consumer

An application is using Messaging. It consumes Messages from a Message Channel, but it does not
necessarily want to consume all of the messages on that channel, just some of them.

How can a message consumer select which messages it wishes to receive?

By default, if a Message Channel has only one consumer, all Messages on that channel will be
delivered to that consumer. Likewise, if there are multiple Competing Consumers on the channel,

any message can potentially go to any consumer, and every message will go to some consumer.
A consumer normally does not get to choose which messages it consumes; it always gets
whatever message is next.

This behavior is fine as long as the consumer wants to receive any and all messages on the
channel, which is normally the case. This is a problem, however, when a consumer only wants to
consume certain messages, because a consumer normally has no control over which messages on
a channel it receives. Why would a consumer want to receive certain messages only? Consider an
application processing loan request messages; it may want to process loans for up to $100,000
differently from those over $100,000. One approach would be for the application to have two
different kinds of consumers, one for small loans and another for big loans. Yet, since any
consumer can receive any message, how can the application make sure that the right messages go
to the right consumer?

The simplest approach might be for each to consume whatever messages it gets. If it gets the
wrong kind of message, it could somehow hand that message to the appropriate kind of
consumer. That’s going to be difficult, though; consumer instances usually don’t know about
each other, and finding one that isn’t already busy processing another message can be difficult.
Perhaps when the consumer realizes it doesn’t want the message, it could put the message back
on the channel. But then it’s likely to just consume the message yet again. Perhaps every
consumer could get a copy of every message, and just discard the ones it doesn’t want. This will
work, but will cause a lot of message duplication and a lot of wasted processing on messages that
are ultimately discarded.

Perhaps the messaging system could define separate channels for each type of message. Then the
sender could make sure to send each message on the proper channel, and the receivers could be
sure that the messages they receive off of a particular channel are the kind desired. However, this
solution is not very dynamic. The receivers may change their selection criteria while the system is
running, which would require defining new channels and redistributing the messages already on
the channels. It also means that the senders must know what the receiver's selection criteria are
and when those criteria change. The criteria need to be a property of the receivers, not of the
channels, and the messages on the channel need to specify what criteria they meet.

What is needed is a way for messages fitting a variety of criteria to all be sent on the same
channel, for the consumers to be able to specify what criteria they're interested in, and for each
consumer to only receive the messages that meet its criteria.

Make the consumer a Selective Consumer, one that filteres the messages delivered by its
channel so that it only receives the ones that match its criteria.

There are three parts to this filtering process:

1. Specifying Producer — Specifies the message’s selection value before sending it.
2. Selection Value — One or more values specified in the message that allow a consumer to

decide whether to select the message.
3. Selective Consumer — Only receives messages that meet its selection criteria.

The message sender specifies each message’s selection value before sending it. When a message
arrives, a Selective Consumer tests the message’s selection value to see if the value meets the
consumer’s selection criteria. If so, the consumer receives the message and passes it to the
application for processing.

Selective Consumer Sequence

When the sender creates the message, it also sets the message’s selection value; then it sends the
message. When the messaging system delivers the message, the Selective Consumer tests the
message’s selection value to determine whether to select the message. If the message passes, the
consumer receives the message and passes the message to the application using a callback.

Selective Consumers are often used in groups—one consumer filters for one set of criteria, while
another filters for a different set, and so on. For the loan processing example, one consumer
would select “amount <= $100,000” while another would select “amount > $100,000”. Then each
consumer would only get the kinds of loans it is interested in.

When multiple Selective Consumers are used with a Point-to-Point Channel, they effectively become
Competing Consumers that are also selective. If two consumer’s criteria overlap, and a message’s
selection value meets both of their criteria, either consumer can consume the message.
Consumers should be designed to ensure that at least one of them is eligable to consume every
valid selection value. Otherwise, a message with an unmatched selection value will never be
consumed and will clutter the channel forever (or at least until Message Expiration occurrs).

When multiple Selective Consumers are used with a Publish-Subscribe Channel, each message will
be delivered to each subscriber, but a subscriber will simply ignore its copy of a message that
does not fit its criteria. Once a consumer decides to ignore a message, the messaging system can
discard the message since it has been successfully delivered and will never be consumed. A
messaging system can optimize this process by not even delivering a message it knows the
consumer will ignore, thereby decreasing the number of copies of a message that must be
produced and transmitted. This behavior of discarding ignored messages is independent of
whatever Guaranteed Delivery, Durable Subscriber, and/or Message Expiration settings are used.

Selective Consumers make a single channel act like multiple Datatype Channels. Different types of
messages can have different selection values, so that a consumer that is specialized for a
particular type will only receive messages of that type. This can facilitate sending a large number
of types using a small number of channels. This approach can also conserve channels in an
enterprise which requires more channels than a messaging system can support.

Competing, Selective Consumers

Using Selective Consumers to emulate Datatype Channels is not a good approach when trying to
hide messages of a certain type from certain consumer applications. Whereas a messaging system
can ensure only authorized applications successfully receive messages from a channel, they
usually do not authorize a consumer’s selection criteria, so a malicious consumer authorized to
access the channel can gain access to unauthorized messages by changing its criteria. Separate
datatype channels are needed to securely lock out applications.

An alternative to using Selective Consumers is to use a Message Dispatcher. The selection criteria are
built into the dispatcher, which then uses them to determine the performer for each message. If a
message does not meet any of the performer’s criteria, rather than leave it cluttering the channel
or discarding it, the dispatcher can reroute the unmatched message to the Invalid Message Channel.
As with the tradeoff between Message Dispatcher and Competing Consumers, the question is really
whether you wish to let the messaging system do the dispatching or whether you want to
implement it yourself. If a messaging system does not support Selective Consumer as a feature,
you have no choice but to implement it youself using a Message Dispatcher.

As mentioned earlier, if none of the Selective Consumers on a channel match the message’s selector
value, the message will be ignored as if the channel has no receivers. A similar problem in
procedural programming is a case statement where none of the cases matches the value being
tested. Thus a case statement can have a default case which matches values that aren’t matched
by any other case. Applying this approach to messaging, it may seem tempting to create some
sort of default consumer for messages that otherwise have no matching consumer. Yet such a
default consumer will not work as desired because it would require an expression that matches
all selector values, so it would compete with all other consumers. Instead, to implement a default
consumer, use a Message Dispatcher that implements a case statement with a default option for
unhandled cases that uses the default consumer.

Another alternative to Selective Consumers is Message Filter. They accomplish much the same goal,
but in different ways. With a Selective Consumer, all of the messages are delivered to the receivers,
but each receiver ignores unwanted messages. A Message Filter sits between a channel from the
sender and a channel to the receiver and only transfers desired messages from the sender’s
channel to the receiver’s. Thus unwanted messages are never even delivered to the receiver’s
channel, so the receiver has nothing to ignore. Message Filter is useful for getting rid of messages
that no receiver wants. Selective Consumers are useful when one receiver wants to ignore certain
messages but other receivers want to receive those messages.

Another alternative to consider is Content-Based Router. This type of router, like a filter, makes
sure that a channel only gets the messages that the receivers want, which can increase security
and increase the performance of the consumers. Selective Consumer is more flexible, however,
because each filtering option simply requires a new consumer (which are easy to create while the
system is running), whereas each new option with a Content-Based Router requires a new output
channel (which is not so easy to create and use while the system is running) as well as a new
consumer for the new channel. Consider a requirements change where you want to process
medium-size loans ($50K-$150K) differently from small and large loans. With Content-Based
Router, you need to create a new channel for medium loans, as well as a consumer on that new
channel, and adjust the way the router separates loans. You also need to worry about what
happens when the change takes effect, because some messages that have already been routed
onto the original channels may not have been consumed yet and may now be on the wrong
channel. With Selective Consumer, you just replace the two types of consumers (less-than-$100K
and greater-than-$100K) with three types (less-than-$50K, $50K-$150K, and greater-than-$150K).
Content-Based Router is a much more static approach, whereas Selective Consumer can be much
more dynamic.

Ideally, a message’s selection value should be specified in its header, not its body, so that a
Selective Consumer can process the value without having to parse (and know how to parse) the
message’s body.

Selective Consumers make a single channel act like multiple Datatype Channels. They allow
messages to be available for other receivers whereas Message Filter prevents unwanted messages
from being delivered to any receiver, and can be used more dynamically than a Content-Based
Router. A Selective Consumer can be implemented as a Polling Consumer or Event-Driven Consumer,
and can be part of a Transactional Client. To implement the filtering behavior yourself, use a
Message Dispatcher.

Example: Separating Types

For example, a stock trading system with a limited number of channels might need to use one
channel for both quotes and trades. The receiver for performing a quote is very different from
that for trading, so the right receiver needs to be sure to consume the right message. So the
sender would set the selector value on a quote message to QUOTE, and the Selective Consumer for
quotes would only consume messages with that selector value. Trade messages would have their

own TRADE selector value that their senders and receivers would use. In this way, two message
types can successfully share a single channel.

Example: JMS Message Selector

In JMS, a MessageConsumer (QueueReceiver or TopicSubscriber) can be created with a message
selector string that filters messages based on their property values. [JMS11, p.41], [Hapner, p.23]
First, a sender would set the value of a property in the message that the receiver could filter by:

Session session = // get the session

TextMessage message = session.createTextMessage();

message.setText("<quote>SUNW</quote>");

message.setStringProperty("req_type", "quote");

Destination destination = //get the destination

MessageProducer producer = session.createProducer(destination);

producer.send(message);

Second, a receiver set its message selector to filter for that value:

Session session = // get the session

Destination destination = //get the destination

String selector = "req_type = 'quote'";

MessageConsumer consumer =

 session.createConsumer(destination, selector);

This receiver will ignore all messages whose request type property is not set to “quote” as if those
messages were never delivered to the destination at all.

Example: .NET Peek, ReceiveById, and

ReceiveByCorrelationId

In .NET, MessageQueue.Receive does not support JMS-style message selectors per se. Rather, what
a receiver can do is use MessageQueue.Peek to look at a message. If it meets the desired criteria,
then it can use MessageQueue.Receive to read it from the queue. This may not work very reliably,
though, since the message returned by the Receive call may not necessarily be the same message
that was Peeked. Thus use ReceiveById, whereby the consumer specifies the Id property value of
the message it wishes to receive, instead of Receive to ensure getting the same message that was
Peeked.

Another option in .NET is the ReceiveByCorrelationId method, with which the consumer
specifies the CorrelationId property value of the message it wants to receive. A sender of a

particular request message can use ReceiveByCorrelationId to receive the reply message specific
to that request (see Request-Reply and Correlation Identifier).

Related patterns: Competing Consumers, Content-Based Router, Correlation Identifier, Datatype
Channel, Durable Subscriber, Event-Driven Consumer, Message Filter, Guaranteed Delivery, Invalid
Message Channel, Message, Message Channel, Message Dispatcher, Message Expiration, Messaging,
Point-to-Point Channel, Polling Consumer, Publish-Subscribe Channel, Request-Reply, Transactional
Client

Durable Subscriber

An application is receiving messages on a Publish-Subscribe Channel.

How can a subscriber avoid missing messages while it’s not listening for them?

Why is this even an issue? Once a message is added to a channel, it stays there until it is either
consumed, it expires (see Message Expiration), or the system crashes (unless you’re using
Guaranteed Delivery). This is true for a message on a Point-to-Point Channel, but a Publish-Subscribe
Channel works somewhat differently.

When a message is published on a Publish-Subscribe Channel, the messaging system must deliver
the message to each subscriber. How it does this is implementation specific: It can keep the
message until the list of subscribers that have not received it is empty, or it might duplicate and
deliver the message to each subscriber. Whatever the case, which subscribers receive the message
is completely dependent upon who is subscribed to the channel when the message is published.
If a receiver is not subscribed when the message is published, even if the receiver subscribes an
instant later, it will not receive that message. (There is also a timing issue of what happens when
a subscriber subscribes and a message is published on the same channel at “about” the same time.
Does the subscriber receive the message? How this issue is resolved depends on the messaging
system’s implementation. To be safe, subscribers should be sure to subscribe before messages of
interest are published.)

As a practical matter, a subscriber unsubscribes from a channel by closing its connection to the
channel. Thus no explicit unsubscribe action is necessary; the subscriber just closes its connection.

Often, an application prefers to ignore messages published after it disconnects, because being
disconnected means that the application is uninterested in whatever may be published. For
example, a B2B/C application selling bricks may subscribe to a channel where buyers can request
bricks. If the application stops selling bricks, or is temporarily out of bricks, it may decide to
disconnect from the channel to avoid receiving requests it cannot fulfill anyway.

Yet this behavior can be disadvantageous, because the “you snooze, you loose” approach can
cause an application to miss messages it needs. If an application crashes, or must be stopped for
maintenance, it may want to know what messages it missed while it wasn’t running. The whole

idea of messaging is to make communication reliable even if the sender and receiver applications
and network aren’t all working at the same time.

So, sometimes applications disconnect because they don’t want messages from that channel
anymore. But sometimes applications have to disconnect for a short time, but when they
reconnect, they want to have access to all of the messages that were published during the
connection lapse. A subscriber is normally either connected (subscribed) or disconnected
(unsubscribed), but a third possibe state is inactive, the state of a subscriber that is disconnected but
still subscribed because it wants to receive messages published while it is disconnected.

If a subscriber was connected to a Publish-Subscribe Channel, but is disconnected when a message
is published, how does the messaging system know whether to save the message for the
subscriber so that it can deliver the message when the subscriber reconnects? That is, how does
the messaging system know whether a disconnected subscriber is inactive or unsubscribed?
There needs to be two kinds of subscriptions, those that end when the subscriber disconnects and
those that survive even when the application disconnects and are only broken when the
application explicitly unsubscribes.

By default, a subscription only lasts as long as its connection. So what is needed it another type of
subscription that survives disconnects by becoming inactive.

Use a Durable Subscriber to make the messaging system save messages published while the
subscriber is disconnected.

A durable subscription saves messages for an inactive subscriber and deliveres these saved
messages when the subscriber reconnects. In this way, a subscriber will not loose any messages
even though it disconnected. A durable subscription has no effect on the behavior of the
subscriber or the messaging system while the subscriber is active (e.g., connected). A connected
subscriber acts the same whether its subscription is durable or non-durable. The difference is in
how the messaging system behaves when the subscriber is disconnected.

A Durable Subscriber is simply a subscriber on a Publish-Subscribe Channel. However, when the
subscriber disconnects from the messaging system, it becomes inactive and the messaging system
will save any messages published on its channel until it becomes active again. Meanwhile, other
subscribers to the same channel may not be durable; they’re non-durable subscribers.

Durable Subscription Sequence

To be a subscriber, the Durable Subscriber must establish its subscription to the channel. Once it
has, when it closes its connection, it becomes inactive. While the subscriber is inactive, the
publisher publishes a message. If the subscriber were non-durable, it would miss this message;
but because it is durable, the messaging system saves this message for this subscriber. When the
subscriber resubscribes, becoming active once more, the messaging system delivers the queued
message (and any others saved for this subscriber). The subscriber receives the message and
process it (perhaps delegating the message to the application). Once the subscriber is through
processing messages, if it does not wish to receive any more messages, it closes its connection,
becoming inactive again. Since it does not want the messaging system to save messages for it
anymore, it also unsubscribes.

An interesting consequence is: What would happen if a durable subscriber never unsubscribed?
The inactive durable subscription would continue to retain messages—that is, the messaging
system will save all of the published messages until the subscriber reconnects. But if the
subscriber does not reconnect for a long time, the number of saved messages can become
excessive. Message Expiration can help alleviate this problem. The messaging system may also
wish to limit the number of messages that can be saved for an inactive subscription.

Example: Stock Trading

A stock trading system might use a Publish-Subscribe Channel to broadcast changes in stocks
prices; each time a stocks’ price changes, a message is published. One subscriber might be a GUI
that displays the current prices for certain stocks. Another subscriber might be a database that
stores the day’s trading range for certain stocks.

Both applications should be subscribers to the price-change channel so that they’re notified when
a stock’s price changes. The GUI’s subscription can be non-durable because it is displaying the
current price. If the GUI crashes a looses its connection to the channel, there is no point in saving
price changes the GUI cannot display. On the other hand, the price range database should use a
Durable Subscriber. While it is running, it can display the range thus far. If it looses its connection,
when it reconnects, it can process the price changes that occurred and update the range as
necessary.

Example: JMS Durable Subscription

JMS supports durable subscriptions for TopicSubscribers. [JMS11, pp.80-81], [Hapner, pp.61-63]

One challenge with durable subscriptions is differentiating between an old subscriber that is
reconnecting vs. a completely new subscriber. In JMS, a durable subscription is identified by
three criteria:

1. the topic being subscribed to
2. the connection’s client ID
3. and the subscriber’s subscription name

The connection’s client ID is a property of its connection factory, which is set when the
connection factory is created using the messaging system’s administration tool. The subscription
name has to be unique for each subscriber (for a particular topic and client ID).

A Durable Subscriber is created using the Session.createDurableSubscriber method:

ConnectionFactory factory = // obtain the factory

// the factory has the client ID

Connection connection = factory.createConnection();

// the connection has the same client ID as the factory

Topic topic = // obtain the topic

String clientID = connection.getClientID(); // just in case you're curious

String subscriptionName = "subscriber1"; // some UID for the subscription

Session session =

 connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

TopicSubscriber subscriber =

 session.createDurableSubscriber(topic, subscriptionName);

This subscriber is now active. It will receive messages as they are published to the topic (just like
a non-durable subscriber). To make it inactive, close it, like this:

subscriber.close();

The subscriber is now disconnected and therefore inactive. Any messages published to its topic
will be saved for this subscriber and delivered when it reconnects.

To make the subscription active again, you must create a new durable subscriber with the same
topic, client ID, and subscription name. The code is the same as before, except that the connection
factory, topic, and subscription name must be the same as before.

Because the code is the same to establish a durable subscription and to reconnect to it, only the
messaging system knows whether this durable subscription had already been established or is a
new one. One interesting consequence is that the application re-connecting to a subscription may
not be the same application that disconnected earlier. As long as the new application uses the
same topic, the same connection factory (and so the same client ID), and the same subscription
name as the old application, the messaging system cannot distinguish between the two
applications and will proceed to deliver all messages to the new application that weren’t
delivered to the old application before it disconnected.

Once an application has a durable subscription on a topic, it will have the opportunity to receive
all messages published to that topic, even if the subscriber closes its connection (or if it crashes
and the messaging system closes the subscriber’s connection for it). To stop the messaging system
from queuing messages for this inactive subscriber, the application must explicitly unsubscribe
its durable subscription.

subscriber.close();

// subscriber is now inactive, messages will be saved

session.unsubscribe(subscriptionName);

// subscription is removed

Once the subscriber is unsubscribed, the subscription is removed from the topic, and messages
will no longer be delivered to this subscriber.

Related patterns: Guaranteed Delivery, Message Expiration, Point-to-Point Channel, Publish-Subscribe
Channel

Idempotent Receiver

Even when a sender application only sends a message once, the receiver application may receive
the message more than once.

How can a message receiver deal with duplicate messages?

The Channel Patterns discuss how to make messaging channels reliable by using Guaranteed
Delivery. However, some reliable messaging implementations can produce duplicate messages. In
other scenarios, Guaranteed Delivery may not be available because the communication relies on
inherently unreliable protocols. This is the case in many B2B (business-to-business) integration
scenarios where messages have to be sent over the Internet using the HTTP protocol. In these
cases, message delivery can generally only be guaranteed by resending the message until an
acknowledgment is returned from the recipient. However, if the acknowledgment is lost due to
an unreliable connection, the sender may resend a message that the receiver had already received
(see diagram).

Message duplication because of problem sending acknowledgement

Many messaging systems incorporate built-in mechanisms to eliminate duplicate messages so
that the application does not have to worry about duplicates. Eliminating duplicates inside the
messaging infrastructure causes additional overhead. If the receiver is inherently resilient against
duplicate messages, for example, a stateless receiver that processes query-style Command
Messages, messaging throughput can be increased if duplicates are allowed. For this reason, some
messaging systems provide only "at least once" delivery and let the application deal with
duplicate messages. Others allow the application to specify whether it deals with duplicates or
not (for example, the JMS spec defines a DUPS_OK_ACKNOWLEDGE mode).

Another scenario that can produce duplicate messages is a failed distributed transaction. Many
packaged applications that are connected to the messaging infrastructure through commercial
adapters cannot properly participate in a distributed two-phase commit. When a message is sent
to multiple applications and the message causes one or more of these applications to fail it may
be difficult to recover from this inconsistent state. If receivers are designed to ignore duplicate
messages, the sender can simply re-send the message to all recipients. Those recipients that had
already received and processed the original message will simply ignore the resend. Those

applications that were not able to properly consume the original message will apply the message
that was resent.

Therefore:

Design a receiver to be an Idempotent Receiver--one that can safely receive the same message
multiple times.

The term idempotent is used in mathematics to describe a function that produces the same result if
it is applied to itself, i.e. f(x) = f(f(x)). In Messaging this concepts translates into the a message that
has the same effect whether it is received once or multiple times. This means that a message can
safely be resent without causing any problems even if the receiver receives duplicates of the same
message.

Idempotency can be achieved through two primary means:

1. Explicit "de-duping", i.e. the removal of duplicate messages.
2. Defining the message semantics to support idempotency.

The recipient can explicitly de-dup messages (let's assume this is a proper English word) by
keeping track of messages that it already received. A unique message identifier simplifies this
task and helps detect those cases where two legitimate messages with the same message content
arrive. By using a separate field, the message identifier, we do not tie the semantics of a duplicate
message to the message content. We then assign a unique message identifier to each message.
Many messaging systems, such as JMS-compliant messaging tools, automatically assign unique
message identifiers to each message without the applications having to worry about them.

In order to detect and eliminate duplicate messages based on the message identifier, the message
recipient has to keep a buffer of already received message identifiers. One of the key design
decisions is how long to keep this history of messages and whether to persist the history to
permanent storage such as disk. This decision depends primarily on the contract between the
sender and the receiver. In the simplest case, the sender sends one message at a time, awaiting
the receiver's acknowledgment after every message. In this scenario, it is sufficient for the
receiver to compare the message identifier of any incoming message to the identifier of the
previous message. It will then ignore the new message if the identifiers are identical. Effectively,
the receiver keeps a history of a single message. In practice, this style of communication can be
very inefficient, especially if the latency (the time for the message to travel from the sender to the
receiver) is significant relative to the desired message throughput. In these situations, the sender
may want to send a whole set of messages without awaiting acknowledgment for each one. This
implies, though, that the receiver has to keep a longer history of identifiers for already received
messages. The size of the receiver's "memory" depends on the number of message the sender can
send without having gotten an acknowledgment from the receiver. This problem resembles the
considerations presented in the Resequencer.

Eliminating duplicate messages is another example where we can learn quite a bit by having a
closer look at the low-level TCP/IP protocol. When IP network packets are routed across the
network, duplicate packets can be generated. The TCP/IP protocol ensures elimination of
duplicate packets by attaching a unique identifier to each packet. Sender and receiver negotiate a
"window size" that the recipient allocates in order to detect duplicates. For a thorough discussion
of how TCP/IP implements this mechanism, see [Stevens].

In some cases, it may be tempting to use a business key as the message identifier and let the
persistence layer handle the de-duping. For example, let's assume that an application persists
incoming orders into a database. If each order contains a unique order number, and we configure
the database to use a unique key on the order number field, the insert operation into the database
would fail if a duplicate order message is received. This solution appears elegant because we
delegated the checking of duplicates to the database systems which is very efficient at detecting
duplicate keys. But we have to be cautious because we associated dual semantics to a single field.
Specifically, we tied infrastructure-related semantics (a duplicate message) to a business field
(order number). Imagine that the business requirements change so that customers can amend
existing orders by sending another message with the same order number (this is quite common).
We would now have to make changes to our message structure since we tied the unique message
identifier to a business field. Therefore, it is best to avoid overloading a single field with dual
semantics.

Using a database to force de-duping is sometimes used with database adapters that are provided
by the messaging infrastructure vendors. In many cases, these adapters are not capable of
eliminating duplicates so that this function has to be delegated to the database.

An alternative approach to achieve idempotency is to define the semantics of a message such that
resending the message does not impact the system. For example, rather than defining a message
as "Add $10 to account 12345", we could change the message to "Set the balance of account 12345
to $110". Both messages achieve the same result if the current account balance is $100. The second
message is idempotent because receiving it twice will not have any effect. Admittedly, this
example ignores concurrency situations, for example the case where another message "Set the
balance of account 12345 to $150" arrives between the original and the duplicate message.

Example: Microsoft IDL (MIDL)

The Microsoft Interface Definition Language (MIDL) supports the concept of idempotency as part
of the remote call semantics. A remote procedure can be declared as idempotent by using the
[idempotent] attribute. The MIDL specification states that the "[idempotent] attribute specifies
that an operation does not modify state information and returns the same results each time it is
performed. Performing the routine more than once has the same effect as performing it once".

interface IFoo;

[

 uuid(5767B67C-3F02-40ba-8B85-D8516F20A83B),

 pointer_default(unique)

]

interface IFoo

{

 [idempotent]

 bool GetCustomerName

 (

 [in] int CustomerID,

 [out] char *Name

);

}

Related patterns: Command Message, Guaranteed Delivery, Messaging, Resequencer

Service Activator

An application has a service that it would like to make available to other applications.

How can an application design a service to be invoked both via various messaging
technologies and via non-messaging techniques?

An application may not want to choose whether a service (an operation in a Service Layer [EAA])
can be invoked synchronously or asynchronously, it may want to support both approaches for
the same service. Yet technologies can seem to force the choice. For example, an application
implemented using EJB (Enterprise JavaBeans) may need to use a session bean to support
synchronous clients, but a message-driven bean to support messaging clients. (Thanks to Mark
Weitzel for this example.)

Developers designing an application to work with other applications, such as a B2B
(business-to-business) application, may not know what other applications they’re communicating
with and how the various communication will work. There are too many different messaging
technologies and data formats to try to support every one just in case it’s needed. (Thanks to
Luke Hohmann for this example.)

Receiving and processing a message involves a number of steps; separating these steps can be
difficult and unnecessarily complex. Yet Message Endpoint code that mixes together these
tasks—receiving the message, extracting its contents, and acting on those contents to perform
work—can be difficult to reuse.

When designing clients for multiple styles of communication, it may well seem necessary to
reimplement the service for each style. This makes supporting each new style cumbersome and
creates the risk that each style may not produce quite the same behavior. What is needed is a way
for a single service to support multiple styles of communication.

Design a Service Activator that connects the messages on the channel to the service being
accessed.

A Service Activator can be one-way (request only) or two-way (Request-Reply). The service can be
as simple as a method call—synchronous and non-remote—perhaps part of a Service Layer
[EAA]. The activator can be hard-coded to always invoke the same service, or can use reflection
to invoke the service indicated by the message. The activator handles all of the messaging details
and invokes the service like any other client, such that the service doesn’t even know it’s being
invoked through messaging.

Service Activator Sequence for Request-Reply

The Service Activator handles receiving the request message (either as a Polling Consumer or as an
Event-Driven Consumer). It knows the message’s format and processes the message to extract the
information necessary to know what service to invoke and what parameter values to pass in. The
activator then invokes the service just like any other client of the service, and blocks while the

service executes. When the service completes and returns a value, the activator can optionally
create a reply message containing the value and return it to the requestor. (The reply makes the
service invocation an example of Request-Reply messaging.)

A Service Activator enables a service to be written as though it’s always going to be invoked
synchronously. The activator receives the asynchronous message, determines what service to
invoke and what data to pass it, and then invokes the service synchronously. The service is
designed to work without messaging, yet the activator enables it to easily be invoked via
messaging.

If the Service Activator cannot process the message successfully, the message is invalid and should
be moved to an Invalid Message Channel. If the message can be processed and the service is
invoked successfully, then any errors that occur as part of executing the service are semantic
errors in the application and should be handled by the application.

Developers still may not be able to predict every way partners might wish to access their services,
but they do at least know what services their application will provide and can implement those.
Then implementing new activators for different technologies and formats as needed is relatively
easy.

This Service Activator pattern is also documented in [CoreJ2EE], which is where the pattern was
originally named. That version of the pattern is somewhat different from this one—it assumes the
activator is an Event-Driven Consumer, and assumes that the service already exists so that the
activator can be added to the service—but both versions propose the same solution to the same
problem in a very similar fashion. Service Activator is related to the Half-Sync/Half-Async pattern
[POSA2], which separates service processing into synchronous and asynchronous layers.

A Service Activator usually receives Command Messages, which describe what service to invoke. A
Service Activator serves as a Messaging Gateway, separating the messaging details from the service.
The activator can be a Polling Consumer or an Event-Driven Consumer. If the service is transactional,
the activator should be a Transactional Client so that the message consumption can participate in
the same transaction as the service invocation. Multiple activators can be Competing Consumers or
coordinated by a Message Dispatcher. If a Service Activator cannot process a message successfully, it
should send the message to an Invalid Message Channel.

Example: J2EE Enterprise JavaBeans

Consider, for example, Enterprise JavaBeans (EJBs) [EJB20] in J2EE: Encapsulate the service as a
session bean, and then implement message-driven beans for various messaging scenarios: One
for a JMS destination using messages of one format; another for a different destination using
another format; another for a web service/SOAP message; and so on. Each message-driven bean
that processes the message by invoking the service is a Service Activator. Clients that wish to
invoke the service synchronously can access the session bean directly.

Related patterns: Command Message, Competing Consumers, Event-Driven Consumer, Invalid
Message Channel, Message Dispatcher, Message Endpoint, Messaging Gateway, Polling Consumer,
Request-Reply, Transactional Client

11．System Management

Introduction

While developing a messaging solution is no easy task, operating such a solution in production is
equally challenging: A message-based integration solution may produce, route and transform
thousands or even millions of messages in a day. We have to deal with exceptions, performance
bottlenecks and changes in the participating systems. To make things ever more challenging,
components are distributed across many platforms and machines that can reside at multiple
locations.

Besides the inherent complexities and scale of integrating distributed packaged and custom
applications, the architectural benefits of loose coupling actually make testing and debugging a
system harder. Martin Fowler refers to this as the "Architect's dream, Developer's nightmare"
symptom: architectural principles of loose coupling and indirection reduce the assumptions
systems make about each other and therefore provide flexibility. However, testing a system
where a message producer is not aware of who the consumers of this message are, can be
challenging. Add to that the asynchronous and temporal aspects of messaging and things get
even more complicated. For example, the messaging solution may not even be designed for the
message producer to receive a reply message from the recipient(s). Likewise, the messaging
infrastructure typically guarantees the delivery of the message but not the delivery time. This
makes it hard to develop test cases that rely on the results of the message delivery.

When monitoring a message solution, we can track message at two different levels of abstraction.
A typical System Management solution monitors how many messages are being sent or how
long it took a message to be processed. These monitoring solutions do not inspect the message
data except maybe for some fields in the message header such as the message identifier or the
Message History. In contrast, Business Activity Monitoring (BAM) solutions focus on the payload
data contained in the message, for example the Dollar value of all orders placed in the last hour.
Many of the patterns presented in this section are general enough that they can be used for either
purpose. However, because business activity monitoring is a whole new field in itself and shares
many complexities with data warehousing (something we have not touched on at all), we
decided to discuss the patterns in the context of system management.

System Management patterns are designed to address these requirements and provide the tools
to keep a complex message-based system running. We divided this chapter into three sections:

Monitoring and Controlling

A Control Bus provides a single point of control to manage and monitor a distributed solution. It
connects multiple components to a central management console that can display the status of

each component and monitor message traffic through the components. The console can also be
used to send control commands to components, e.g. to change the message flow.

We may want to route messages through additional steps, such as validation or logging. Because
these steps can introduce performance overheads, we may want to be able to switch them on and
off via the control bus. A Detour gives us this ability.

Observing and Analyzing Message Traffic

Sometimes we need to want to inspect the contents of a message without affecting the primary
message flow. A Wire Tap allows us to tap into message traffic.

When we debug a message-based system, is is a great aid to know where a specific message has
been. The Message History provides this capability without introducing dependencies between
components.

While the Message History is tied to an individual message, a central Message Store can provide a
complete account of every message that traveled through the system. Combined with the Message
History the Message Store can analyze all possible paths messages can take through the system.

The Wire Tap, Message History, and Message Store help us analyze the asynchronous flow of a
message. In order to track messages sent to request-reply services, we need to insert a Smart
Proxy into the message stream.

Testing and Debugging

Testing a messaging system before deploying it into production is a good idea. But testing should
not stop there. You should be actively verifying that the running messaging system is functioning
properly. You can do this by periodically injecting a Test Message into the system and verifying
the results.

When a component fails or misbehaves, it is easy to end up with unwanted messages on a
channel. During testing it is very useful to remove all remaining messages from a channel so that
the components under test do not receive 'leftover' messages. A Channel Purger does that for us.

Control Bus

Naturally, enterprise integration systems are distributed. In fact, one of the defining qualities of
an enterprise messaging system is to enable communication between disparate systems.
Messaging systems allow information to be routed and transformed so that data can be
exchanged between these systems. In most cases, these applications are spread across multiple
networks, buildings, cities or continents.

How can we effectively administer a messaging system that is distributed across multiple
platforms and a wide geographic area?

A distributed, loosely coupled architecture allows for flexibility and scalability. At the same time
it poses serious challenges for administration and control of such a system. For example, how can
you tell whether all components are up and running? A simple process status won't suffice
because processes are distributed across many machines. Also, if you cannot obtain status from a
remote machine does it mean that the remote machine is not functioning or may the
communication with the remote machine be disturbed?

Besides just knowing whether a system or a component is up and running you also need to
monitor the dynamic behavior of the system. What is the message throughput? Are there any
unusual delays? Are channels filling up? Some of this information requires tracking of message
travel times between components or through components. This requires the collection and
combination of information from more than one machine.

Also, just reading information from components may not be sufficient. Often times, you need to
make adjustments or change configuration settings while the system is running. For example,
you may need to turn logging features on or off while the system is running. Many applications
use property files and error logs to read configuration information and report error conditions.
This approach tends to work well as long as the application consists of a single machine, or
possibly a small number of machines. In a large, distributed solution, property files would have
to be copied to remote machines using some file transfer mechanism, which requires the file
system on every machine to be accessible remotely. This can pose security risks and can be
challenging if the the machines are connected over the Internet or a wide-area network that may
not support file mapping protocols. Also, the versions of the local property files would have to be
managed carefully -- a management nightmare waiting to happen.

It seems natural to try to leverage the messaging infrastructure to perform some of these tasks.
For example, we could send a message to a component to change its configuration. This control
message could be transported and routed just like a regular message. This would solve most of
the communication problems but also poses new challenges. Configuration messages should be
subject to stricter security policies than regular application messages. For example, one wrongly
formatted control message could easily bring a component down. Also, what if messages are
queued up on a message channel because a component is malfunctioning? If we send a control
message to reset the component, this control message would get queued up with all the other
messages and not reach the component in distress. Some messaging systems support message
priorities that can help move control messages to the front of the queue. However, not all systems
provide this ability, and the priority may not help if a queue is filled to the limit and refuses to
accept another message. Likewise, some control messages are of a lower priority than application
messages. If we have components publish periodic status messages, delaying or losing a 'I am
alive' control message may be a lot less troublesome and delaying or losing the 'Order for $1
Million' message.

Use a Control Bus to manage an enterprise integration system. The Control Bus uses the same
messaging mechanism used by the application data, but uses separate channels to transmit
data that is relevant to the management of components involved in the message flow.

Each component in the system is now connected to two messaging subsystems:

• The Application Message Flow
• The Control Bus

The application message flow transports all application-related messages. The components
subscribe and publish to these channels just like they would in an unmanaged scenario. In
addition, each component also sends and receives messages from the channels that make up the
Control Bus. These channels connect to a central management component.

The Control Bus is well suited to carry the following types of messages:

• Configuration - each component involved in the message flow should have configurable
parameters that can be changed as required. These parameters include channel addresses,
message data formats, timeouts etc. Components use the Control Bus to retrieve this
information from a central repository rather than using property files, allowing a central
point of configuration and the reconfiguration of the integration solution at run-time. For
example, the routing table inside a Content-Based Router may need to be updated
dynamically based on system conditions, such as overload or component failure.

• Heartbeat - each component may send a periodic 'heartbeat' message on the Control Bus
at specified intervals so that a central console application can verify that the component is
functioning properly. This 'heartbeat' may also include metrics about the component,
such as number of messages processed, the amount of available memory on the machine
etc.

• Test Messages - heartbeat messages tell the Control Bus that a component is still alive, but
may provide limited information on ability of the component to correctly process
messages. In addition to having components publish periodic heartbeat messages to the
Control Bus, we can also inject test messages into the message stream that will be
processed by the components. We will then extract the message later to see whether the
component processed the message correctly. As this blurs the definition of the control bus
and the message bus, I decided to define a separate pattern for it (see Test Message).

• Exceptions - each component can channel exception conditions to the Control Bus to be
evaluated. Severe exceptions may cause an operator to be alerted. The rules to define
exception handling should be specified in a central handler.

• Statistics - Each component can collect statistics about the number of messages processed,
average throughput, average time to process a message, etc. Some of this data may be
split out by message type, so we can determine whether messages of a certain type are
flooding the system. Since this message tends to be lower priority than other messages, it
is likely that the Control Bus uses non-guaranteed or lower-priority channels for this type
of data.

• Live Console - most of the functions mentioned here can be aggregated for display in a
central console. From here, operators can assess the health of the messaging system and
take corrective action if needed.

Many of the functions that a Control Bus supports resemble traditional network management
functions that are used to monitor and maintain any networked solution. A Control Bus allows us
to implement equivalent management functions at the messaging system level -- essentially
elevating them from the low-level IP network level to the richer messaging level. Providing this
functionality is vital to the successful operation of a messaging infrastructure, but the absence of
management standards for messaging solutions makes it difficult to build enterprise-wide,
reusable management solutions for messaging systems.

When we design message processing components, we architect the core processor around three
interfaces (see Figure). The inbound data interface receives incoming messages from the message
channel. The outbound data interface sends processed messages to the outbound channel. The
control interface sends and receives control messages from and to the Control Bus.

Key interfaces of a messaging component.

Example: Instrumenting the Loan Broker Example

At the end of this chapter, we show how to use a Control Bus to instrument the Asynchronous
Implementation with MSMQ of the Loan Broker example. This implementation includes a simple
management console that displays the status of components in real-time (see Loan Broker System
Management).

Related patterns: Asynchronous Implementation with MSMQ, Content-Based Router, Loan Broker
System Management, Test Message

Detour

A Wire Tap is useful to inspect messages that travel across a channel. Sometimes, though, we
need to modify or reroute the messages instead of simply inspecting them.

How can you route a message through intermediate steps to perform validation, testing or
debugging functions?

Performing validations on messages that travel between components can be a very useful
debugging tool. However, these extra steps may not always be required and would slow down
the system if they are always executed.

Being able to include or skip these steps based on a central setting can be a very effective
debugging or performance tuning tool. For example, while we test a system we may want to pass
messages through additional validation steps. Bypassing these steps during production may
improve performance. We can compare these validations to assert statements in code that are
executed in the debug configuration but not in the release configuration of the executable.

Likewise, during trouble-shooting it may be useful to route messages through additional steps
for logging or monitoring purposes. Being able to turn these logging steps on and off allows us to
maximize message throughput under normal circumstances.

Construct a Detour with a context-based router controlled via the Control Bus. In one state the
router routes incoming messages through additional steps while in the other it routes
messages directly to the destination channel.

The Detour uses a simple context-based router with two output channels. One output channel
passes the unmodified message to the original destination. When instructed by the Control Bus,
the Detour routes messages to a different channel. This channel sends the message to additional
components that can inspect and/or modify the message. Ultimately, these components route the
message to the same destination.

If the detour route contains only a single component, it may be more efficient to combine the
Detour switch and the component into a single filter. However, this solution assumes that the
component in the detour path can be modified to include the Control Bus-controlled bypass logic.

The strength of controlling the Detour over the Control Bus is that multiple Detours can be
activated or deactivated simultaneously with a single command on the Control Bus using a
Publish-Subscribe Channel from the control console to all Detours.

Related patterns: Control Bus, Publish-Subscribe Channel, Wire Tap

Wire Tap

Point-to-Point Channels are often used for Document Messages because they ensure that exactly one
consumer will consume each message. However, for testing, monitoring or troubleshooting, it
may be useful to be able to inspect all messages that travel across the channel.

How do you inspect messages that travel on a point-to-point channel?

It can be very useful to see which messages traverse a channel. For example, for simple
debugging purposes or to store messages in a Message Store.

You can't just add another listener to the Point-to-Point Channel because it would consume
messages off the channel and prevent the intended recipient from being able to consume the
message.

Alternatively, you could make the sender or the receiver responsible to publish the message to a
separate channel for inspection. However, this would force us to modify a potentially large set of
components. Additionally, if we are dealing with packaged applications, we may not even be
able to modify the application.

You could also consider changing the channel to a Publish-Subscribe Channel. This would allow
additional listeners to inspect messages without disturbing the flow of messages. However, a
Publish-Subscribe Channel change the semantics of the channel. For example, multiple Competing
Consumers may be consuming messages off the channel, relying on the fact that only one
consumer can receive a specific message. Changing the channel to the a Publish-Subscribe Channel
would cause each consumer to receive each message. This could be very undesirable, for example
if the incoming messages represent orders that now get processed multiple times. Even if only a
single consumer listens on the channel, using a Publish-Subscribe Channel may be less efficient or
less reliable than a Point-to-Point Channel.

Many messaging systems provide a peek method that allows a component to inspect a messages
inside a Point-to-Point Channel without consuming the message. This approach has one important
limitation though: once the intended consumer consumes the message, the peek method can no

longer see the message. Therefore, this approach does not allow us to analyze messages after they
have been consumed.

You could insert a component into the channel (a form of "interceptor') that performs any
necessary inspection. The component would consume a message off the incoming channel,
inspect the message and pass the unmodified message to the output channel. However,
frequently the type of inspection depends on messages from more than one channel (e.g. to
measure message run-time) so that this function cannot be implemented by a single filter inside a
single channel.

Insert a simple Recipient List into the channel that publishes each incoming message to the
main channel and a secondary channel.

The Wire Tap is a fixed Recipient List with two output channels. It consumes messages off the
input channel and publishes the unmodified message to both output channels. To insert the Wire
Tap into a channel, you need to create an additional channel and change the destination receiver
to consume of the second channel. Because the analysis logic is located inside a second
component, we can insert a generic Wire Tap into any channel without any danger of modifying
the primary channel behavior. This improves reuse and reduces the risk of instrumenting an
existing solution.

It might be useful to make the Wire Tap programmable over the Control Bus so that the secondary
channel (the "tap") can be turned on or off. This way, the Wire Tap can be instructed to publish
messages to the secondary channel only during testing or debugging cycles.

The main disadvantage of the Wire Tap is the additional latency incurred by consuming and
republishing a message. Many integration tool suites automatically decode a message even if it is
published to another channel without modification. Also, the new message will receive a new
message id and new time stamps. These operations can add up to additional overhead.

Because the Wire Tap publishes two messages, it is important not to correlate messages by their
message ID. Even though the primary and the secondary channel receive identical messages,
most messaging systems automatically assign a new message ID to each message in the system.
This means that the original message and the "duplicate" message have different message IDs.

A Message Broker can easily be turned into a Wire Tap because all messages already pass through
this central component.

An important limitation of the Wire Tap is that it cannot alter the messages flowing across the
channel. If you need to be able to manipulate messages, use a Detour instead.

Example: Loan Broker

At the end of this chapter we enhance the loan broker to include a Wire Tap on the request
channel to the Credit Bureau to keep a log of all requests made to this external service (see Loan
Broker System Management).

Example: Using Multiple Wire Taps to Measure Message

Runtime

One of the strengths of the Wire Tap is that we can combine multiple Wire Taps to send copies of
messages to a central component for analysis. That component can be a Message Store or another
component that analyses relationships between messages, e.g. the time interval between two
related messages. (see picture)

Using a Pair of Wire Taps to Analyze Message Runtime

Related patterns: Competing Consumers, Control Bus, Detour, Document Message, Message Broker,
Message Store, Point-to-Point Channel, Publish-Subscribe Channel, Recipient List, Loan Broker System
Management

Message History

One of key benefits of a message-based systems is the loose coupling between participants; the
message sender and recipient make no (or few) assumptions about each other's identity. If a
message recipient retrieves a message from a message channel, it generally does not know nor
care which application put the message on the channel. The message is by definition

self-contained and is not associated with a specific sender. This is one of the architectural
strengths of message-based systems.

However, the same property can make debugging and analyzing dependencies very difficult. If
we are not sure where a message goes, how can we assess the impact of a change in the message
format? Likewise, if we don't know which application published a message it is difficult to
correct a problem with the message.

How can we effectively analyze and debug the flow of messages in a loosely coupled system?

The Control Bus monitors the state of each component that processes messages, but it does not
concern itself with the route that an individual message takes. You could modify each component
to publish the unique message identifier of each message that passes through it to the Control Bus.
This information can then be collected in a common database, a Message Store. This approach
requires a significant amount of infrastructure, including a separate data store. Also, if a
component needs to examine the history of a message, it would have to execute a query against a
central database, running the risk of turning the database into a bottle neck.

Tracking the flow of a message through a system is not as simple as it appears. It would seem
natural to use the unique message ID associated with each message. However when a component
(e.g. a Message Router processes a message and publishes it to the output channel, the resulting
message will receive a new message identifier that is not associated with the message that the
component consumed. Therefore, we would need to identify a new key that is copied from the
incoming message to outgoing message to that the two message can be associated later. This can
work reasonable well if the component publishes exactly one message for every message it
consumes. However, this is not the case for many components, e.g. a Recipient List, an Aggregator,
or a Process Manager.

Instead of identifying the path of each message by tagging the messages, the message itself could
collect a list of components that it traversed. If each component in the messaging system carries a
unique identifier, each component could add its identifier to each message it publishes.

Therefore, attach a Message History to the message. The Message History is a list of all
applications that the message passed through since its origination.

The Message History maintains a list of all components that the message passed through. Every
component that processes the message (including the originator) adds one entry to the list. The
Message History should be part of the message header because it contains system-specific control

information. Keeping this information in the header separates it from the message body that
contains application specific data.

Not every message that a component publishes is the result of a single message. For example,an
Aggregator publishes a single message that carries information collected from multiple messages,
each of which could have its own history. If we want to represent this scenario in the Message
History, we have two choices. If we want to track the complete history we can enhance the
Message History to be stored as a hierarchical tree structure. Because of the recursive nature of a
tree structure we can store multiple message histories under a single 'node'. Alternatively, we can
keep a simple list and only keep the history of one incoming message. This can work well if one
incoming message is more important to the result than other, auxiliary messages.

The Message History is most useful if a series of messages flows through a number of filters to
perform a specific business function or process. If it is important to manage the path that a
message takes, a Process Manager can be useful. The Process Manager creates one process instance
for each incoming trigger message. The flow of the message through various components is now
managed centrally, alleviating the need to tag each message with it's history.

Equipping a message with its history has also another important benefit when using
Publish-Subscribe Channels to propagate events. Assume we implement a system that propagates
address changes to multiple systems via Publish-Subscribe Channels. Each address change is
broadcast to all interested systems so that they may update their records. This approach is very
flexible towards the addition of new systems -- the new system will automatically receive the
broadcast message without requiring any changes to the existing messaging system. Assume the
customer care system is one of the systems that stores addresses in the application database. Each
change to the database fields causes a message to be triggered to notify all systems of the change.
By nature of the publish-subscribe paradigm, all systems subscribing to the 'address changed'
channel will receive the event. The customer care system itself has to subscribe to this channel, in
order to receive updates made in other systems, e.g. through a self-service Web site. This means
that the customer care system will receive the message that it just published. This received
message would result in a database update, which will in turn trigger another 'address changed'
message. We could end up in an infinite loop of 'address changed' messages. To avoid such an
infinite loop, the subscribing applications can inspect the Message History to determine whether
the message originated from the very same system and ignore the incoming message if this is the
case.

Example: TIBCO ActiveEnterprise

Many EAI integration suites include support for a Message History. For example, the message
header of every ActiveEnterprise message includes a tracking field that maintains a list of all
components though which the message has passed. In this context it is important to note that a
TIBCO ActiveEnterprise component assigns outgoing messages the same message ID as the
consumed message. This makes tracking of messages through multiple component easier, but it
also means that the message ID is not a system-wide unique property because multiple

individual messages share the same ID. For example, when implementing a Recipient List TIBCO
ActiveEnterprise transfers the ID of the consumed message to each outbound message.

The following example shows the dump of a message that passed through multiple components,
including two Integration Manager processes, OrderProcess and VerifyCustomerStub.

tw.training.customer.verify.response

{

 RVMSG_INT 2 ̂ pfmt^ 10

 RVMSG_INT 2 ̂ ver^ 30

 RVMSG_INT 2 ̂ type^ 1

 RVMSG_RVMSG 108 ̂ data^

 {

 RVMSG_STRING 23 ̂ class^ "VerifyCustomerResponse"

 RVMSG_INT 4 ̂ idx^ 1

 RVMSG_STRING 6 CUSTOMER_ID "12345"

 RVMSG_STRING 6 ORDER_ID "22222"

 RVMSG_INT 4 RESULT 0

 }

 RVMSG_RVMSG 150 ̂ tracking^

 {

 RVMSG_STRING 28 ̂ id^ "4OEaDEoiBIpcYk6qihzzwB5Uzzw"

 RVMSG_STRING 41 ̂ 1^ "imed_debug_engine1-OrderProcess-Job-4300"

 RVMSG_STRING 47 ̂ 2^ "imed_debug_engine1-VerifyCustomerStub-Job-4301"

 }

}

Related patterns: Aggregator, Control Bus, Message Router, Message Store, Process Manager,
Publish-Subscribe Channel, Recipient List

Message Store

As the Message History describes, the architectural principle of loose coupling allows for flexibility
in the solution, but can make it difficult to gain insight into the dynamic behavior of the
integration solution.

How can we report against message information without disturbing the loosely coupled and
transient nature of a messaging system?

The very properties that make messaging powerful can also make it difficult to manage.
Asynchronous messaging guarantees delivery, but does not guarantee when the message will be
delivered. For many practical applications, though the response time of a system may be critical.
It may also be important to know how many messages passed through the system within a
certain time interval.

The Message History pattern illustrates the usefulness of being able to tell the "source" of a
message. From this data, we can derive interesting message throughput and runtime statistics.
The only downside is that the information is contained within each individual message. There is
no easy way to report against this information since it is spread across many messages. Also, the
lifetime of a message can be very short. Once the message is consumed, the Message History may
no longer be available.

In order to perform meaningful reporting, we need to store message data persistently and in a
central location.

Use a Message Store to capture information about each message in a central location.

When using a Message Store, we can take advantage of the asynchronous nature of a messaging
infrastructure. When we send a message to a channel, we send a duplicate of the message to a
special channel to be collected by the Message Store. This can be performed by the component
itself or we can insert a Wire Tap into the channel. We can consider the secondary channel that
carries a copy of the message as part of the Control Bus. Sending a second message in a
'fire-and-forget' mode will not slow down the flow of the main application messages. It does,
however, increase network traffic. That's why we may not store the complete message, but just a
few key fields that are required for later analysis, such as a message ID, or the channel on which
the message was sent and a timestamp.

How much detail to store is actually an important consideration. Obviously, the more data we
have about each message, the better reporting abilities we have. The counter-forces are network
traffic and storage capacity of the Message Store. Even if we store all message data, our reporting
abilities may still be limited. Messages typically share the same message header structure, but the
message content is structured differently. Therefore, we may not be able to easily report against
the data elements contained in a message.

Since the message data is different for each type of message, we need to consider different
storage options. If we create a separate storage schema (e.g. tables) for each message type that
matches that message type's data structure, we can apply indexes and perform complex searches
on the message content. However, this assumes that we have a separate storage structure for each

message type. This could become a maintenance burden. We could also store the message data as
unstructured data in XML format in a long character field. This allows us a generic storage
schema. We could still query against header fields, but would not be able to report against fields
in the message body. However, once we identified a message, we can recreate the message
content based on the XML document stored in the Message Store.

The Message Store may get very large, so most likely we will need to consider introducing a
purging mechanism. This mechanism could move older message logs to a back-up database or
delete it altogether.

Example: Commercial EAI Tools

Some enterprise integration tools supply a Message Store. For example, MSMQ allows queues to
automatically store sent or received messages in a Journal Queue. Microsoft BizTalk optionally
stores all documents (messages) in a SQL Server database for later analysis.

Related patterns: Control Bus, Message History, Wire Tap

Smart Proxy

A pair of Wire Taps can be used to track messages that flow through a component. However, this
approach assumes that the component publishes messages to a fixed output channel. However,
many service-style components publish reply messages to the channel specified by the Return
Address included in the request message.

How can you track messages on a service that publishes reply messages to the Return Address
specified by the requestor?

In order to track messages flowing through a service, we need to capture both request and reply
messages. Intercepting a request message using a Wire Tap is easy enough. Intercepting reply
messages is the tough part because the service publishes the reply message to different channels
based on the requestor's preferred Return Address.

The support of a Return Address is required for most Request-Reply services so that a requestor can
specify the channel that the reply message should be sent to. Changing the service to post reply
messages to a fixed channel would make it hard for each requestor to extract the correct reply
messages. Some messaging systems allow consumers to "peek" for specific messages inside a
single reply queue but that approach is implementation specific and does not work in those
instances where the reply message does not go back to the requestor but to a third party.

As discussed in the Wire Tap, modifying the component to inspect messages is not always feasible
or practical. If we are dealing with a custom application we may not be able to modify the
application code and have to implement a solution that is external to the application. Likewise,

we may not want to require each application to implement inspection logic, especially because
the nature of the logic may vary depending on whether we operate in test mode or production
mode. Keeping the inspection functions in a separate self-contained component improves
flexibility, reuse and testability.

Use a Smart Proxy to store the Return Address supplied by the original requestor and replace
it with the address of the Smart Proxy. When the service sends the reply message route it to
the original Return Address.

The Smart Proxy intercepts messages sent on the request channel to the Request-Reply service. For
each incoming message, the Smart Proxy stores the Return Address specified by the original sender.
It then replaces the Return Address in the message with the channel the reply channel that the
Smart Proxy is listening on. When a reply message comes in on that channel, the Smart Proxy
retrieves the stored Return Address and uses a Message Router to forward the unmodified reply
address to that channel.

The Smart Proxy is also useful in cases where an external service does not support a Return
Address but instead replies to a fixed reply channel. We can proxy such a service with a Smart
Proxy to provide support for a Return Address. In this case the Smart Proxy performs no analytical
functions, but simply forwards the reply message to the correct channel.

The Smart Proxy needs to store the Return Address supplied by the original requestor in such a
way that it can correlate incoming reply messages with the Return Address and forward the reply
message to the correct channel. The Smart Proxy can store this data in two places:

• Inside the Message
• Inside the Smart Proxy

To store the Return Address inside the message, the Smart Proxy can add a new message field with
the Return Address to the message. The Request-Reply service is required to copy this field the
reply message. All the Smart Proxy has to do is to extract the special message field from the reply
message, remove the field from the message and forward the message to the channel specified by
the field. This solution keeps the Smart Proxy simple but it requires collaboration by the
Request-Reply service. If the Request-Reply service is a non-modifiable component, this option may
not be available.

Alternatively, the Smart Proxy can store the Return Address in dedicated storage, for example in a
memory structure or a relational database. Because the purpose of the Smart Proxy is to track
messages between the request and reply message the Smart Proxy usually has to store data from
the request message anyway to correlate it to the reply message and to analyze both messages in
unison. This approach requires the Smart Proxy to be able to correlate the reply message to the
response message. Most Request-Reply services support a Correlation Identifier that the service
copies from the request message to the reply message. If the Smart Proxy cannot modify the
original message format, it can (ab-)use this field to correlate request and reply messages. The
Smart Proxy should construct its own Correlation Identifier because not all requestors will specify a
Correlation Identifier and also because the Correlation Identifier needs to be unique only across
requests made by a single requestor and not across multiple requestors. Because the service reply
queue now carries messages from multiple requestors using the original Correlation Identifier is
not reliable. Therefore, the Smart Proxy stores the original Correlation Identifier together with the
original Return Address and replaces the original Correlation Identifier with its own Correlation
Identifier so that it can retrieve the original Correlation Identifier and Return Address when the reply
message arrives. Many services us the Message ID of the request message as the Correlation
Identifier for the reply message. This introduces another problem. The service will now copy the
Message ID of the request message it received from the Smart Proxy to the reply message to the
Smart Proxy. The Smart Proxy needs to replace this Correlation Identifier in the reply message with
the Message ID of the original request message so that the requestor can properly correlate
request and reply messages. The following picture illustrates this process:

Storing and Replacing the Correlation Identifier and Return Address

Example: Simple Smart Proxy in MSMQ and C#

Implementing a Smart Proxy is not as complicated as it sounds. The following code implements a
solution scenario consisting of two requestors, a Smart Proxy and a simple service. The Smart
Proxy passes the message processing-time to the control bus for display in the console. We want

to allow the requestors to correlate by either the message Id or the numeric AppSpecific property
provided by the Message object.

Simple Smart Proxy Example

For our coding convenience, we define a base class MessageConsumer that encapsulates a the code
that is required to create an event-driven message consumer. Inheriting classes can simply
overload the virtual method ProcessMessage to perform any necessary message handling and do
not have to worry about the configuration of the message queue or the event-driven processing.
Separating this code into a common base class makes it easy to create test clients and a dummy
request-reply service with just a few lines of code.

MessageConsumer

public class MessageConsumer

{

 protected MessageQueue inputQueue;

 public MessageConsumer (MessageQueue inputQueue)

 {

 this.inputQueue = inputQueue;

 SetupQueue(this.inputQueue);

 Console.WriteLine(this.GetType().Name + ": Processing messages from " +

inputQueue.Path);

 }

 protected void SetupQueue(MessageQueue queue)

 {

 queue.Formatter = new System.Messaging.XmlMessageFormatter(new String[]

{"System.String,mscorlib"});

 queue.MessageReadPropertyFilter.ClearAll();

 queue.MessageReadPropertyFilter.AppSpecific = true;

 queue.MessageReadPropertyFilter.Body = true;

 queue.MessageReadPropertyFilter.CorrelationId = true;

 queue.MessageReadPropertyFilter.Id = true;

 queue.MessageReadPropertyFilter.ResponseQueue = true;

 }

 public virtual void Process()

 {

 inputQueue.ReceiveCompleted += new

ReceiveCompletedEventHandler(OnReceiveCompleted);

 inputQueue.BeginReceive();

 }

 private void OnReceiveCompleted(Object source, ReceiveCompletedEventArgs

asyncResult)

 {

 MessageQueue mq = (MessageQueue)source;

 Message m = mq.EndReceive(asyncResult.AsyncResult);

 m.Formatter = new System.Messaging.XmlMessageFormatter(new String[]

{"System.String,mscorlib"});

 ProcessMessage(m);

 mq.BeginReceive();

 }

 protected virtual void ProcessMessage(Message m)

 {

 String text = "";

 try

 {

 text = (String)m.Body;

 }

 catch (InvalidOperationException) {};

 Console.WriteLine(this.GetType().Name + ": Received Message " + text);

 }

}

With the MessageConsumer class as a starting point, we can create a Smart Proxy. A Smart Proxy
contains two MessageConsumers, one for the request messages coming from the requestors and one
for the reply messages returned by the request-reply service. The Smart Proxy also defines a
Hashtable to store message data between request and reply message.

SmartProxy

public class SmartProxyBase

{

 protected SmartProxyRequestConsumer requestConsumer;

 protected SmartProxyReplyConsumer replyConsumer;

 protected Hashtable messageData;

 public SmartProxyBase(MessageQueue inputQueue, MessageQueue serviceRequestQueue,

MessageQueue serviceReplyQueue)

 {

 messageData = Hashtable.Synchronized(new Hashtable());

 requestConsumer = new SmartProxyRequestConsumer(inputQueue, serviceRequestQueue,

serviceReplyQueue, messageData);

 replyConsumer = new SmartProxyReplyConsumer(serviceReplyQueue, messageData);

 }

 public virtual void Process()

 {

 requestConsumer.Process();

 replyConsumer.Process();

 }

}

The SmartProxyRequestConsumer is relatively simple. It stores relevant information from the
request message (message ID, the Return Address, the AppSpecific property, and the current time)
in the hashtable, indexed by the message Id of the new request message sent to the actual service.
The request-reply service copies this message ID to the CorrelationID field of the service reply
message so that the Smart Proxy can retrieve the stored message data. The
SmartProxyRequestConsumer also replaces the Return Address (the ResponseQueue property) with
the queue that the Smart Proxy listens on for reply messages. We included a virtual method
AnalyzeMessage in this class so that subclasses can perform any desired analysis.

SmartProxyRequestConsumer

public class SmartProxyRequestConsumer : MessageConsumer

{

 protected Hashtable messageData;

 protected MessageQueue serviceRequestQueue;

 protected MessageQueue serviceReplyQueue;

 public SmartProxyRequestConsumer(MessageQueue requestQueue, MessageQueue

serviceRequestQueue, MessageQueue serviceReplyQueue, Hashtable messageData) :

base(requestQueue)

 {

 this.messageData = messageData;

 this.serviceRequestQueue = serviceRequestQueue;

 this.serviceReplyQueue = serviceReplyQueue;

 }

 protected override void ProcessMessage(Message requestMsg)

 {

 base.ProcessMessage(requestMsg);

 MessageData data = new MessageData(requestMsg.Id, requestMsg.ResponseQueue,

requestMsg.AppSpecific);

 requestMsg.ResponseQueue = serviceReplyQueue;

 serviceRequestQueue.Send(requestMsg);

 messageData.Add(requestMsg.Id, data);

 AnalyzeMessage(requestMsg);

 }

 protected virtual void AnalyzeMessage(Message requestMsg)

 {

 }

}

The SmartProxyReplyConsumer listens on the service reply channel. The ProcessMessage method
retrieves the message data for the associated request message stored by the
SmartProxyRequestConsumer and calls the AnalyzeMessage template method. It then copies the
CorrelationID and the AppSpecific properties to the new reply message and routes it to the
Return Address specified in the original request message.

SmartProxyReplyConsumer

public class SmartProxyReplyConsumer : MessageConsumer

{

 protected Hashtable messageData;

 public SmartProxyReplyConsumer(MessageQueue replyQueue, Hashtable messageData) :

base(replyQueue)

 {

 this.messageData = messageData;

 }

 protected override void ProcessMessage(Message replyMsg)

 {

 base.ProcessMessage(replyMsg);

 String corr = replyMsg.CorrelationId;

 if (messageData.Contains(corr))

 {

 MessageData data = (MessageData)(messageData[corr]);

 AnalyzeMessage(data, replyMsg);

 replyMsg.CorrelationId = data.CorrelationID;

 replyMsg.AppSpecific = data.AppSpecific;

 MessageQueue outputQueue = data.ReturnAddress;

 outputQueue.Send(replyMsg);

 messageData.Remove(corr);

 }

 else

 {

 Console.WriteLine(this.GetType().Name + "Unrecognized Reply Message");

 //send message to invalid message queue

 }

 }

 protected virtual void AnalyzeMessage(MessageData data, Message replyMessage)

 {

 }

}

In order to collect metrics and send them to the control bus we subclass both the generic
SmartProxy and SmartProxyReplyConsumer classes. The new MetricsSmartProxy instantiates the
SmartProxyReplyConsumerMetrics as the consumer, which includes a simple implementation of
the AnalyzeMessage method. The method computes the message runtime between request and
response and sends this data together with the number of outstanding messages to the control
bus queue. We could easily enhance this method to perform more complex computations. The
control bus queue is connected to a simple file writer that writes each incoming message to a file.

MetricsSmartProxy

public class MetricsSmartProxy : SmartProxyBase

{

 public MetricsSmartProxy(MessageQueue inputQueue, MessageQueue serviceRequestQueue,

MessageQueue serviceReplyQueue, MessageQueue controlBus) :

 base (inputQueue, serviceRequestQueue, serviceReplyQueue)

 {

 replyConsumer = new SmartProxyReplyConsumerMetrics(serviceReplyQueue,

messageData, controlBus);

 }

}

SmartProxyReplyConsumerMetrics

public class SmartProxyReplyConsumerMetrics : SmartProxyReplyConsumer

{

 MessageQueue controlBus;

 public SmartProxyReplyConsumerMetrics(MessageQueue replyQueue, Hashtable

messageData, MessageQueue controlBus) : base(replyQueue, messageData)

 {

 this.controlBus = controlBus;

 }

 protected override void AnalyzeMessage(MessageData data, Message replyMessage)

 {

 TimeSpan duration = DateTime.Now - data.SentTime;

 Console.WriteLine(" processing time: {0:f}", duration.TotalSeconds);

 if (controlBus != null)

 {

 controlBus.Send(duration.TotalSeconds.ToString() + "," + messageData.Count);

 }

 }

}

The class diagram for the solution looks as follows:

Smart Proxy Example Class Diagram

To test the proxy, we created a dummy request-reply service that does nothing but wait for a
random interval between 0 and 200 ms. We feed the Smart Proxy from two requestors, each of

which publishes 30 messages in 100ms intervals. For demonstration purposes we loaded the
resulting control bus file into a Microsoft Excel spreadsheet and created a nice looking chart:

Response Time Statistics Collected by the Smart Proxy and Visualized by the Control Bus Console

We can see that the queue size and the response time increase steadily until 13 messages are
queued up. At that time, the requestors do no longer send new messages and the queue size
decreases steadily. The response time decreases as well, but remains around 1 second because the
message that are now being processed have been sitting in the request queue for that long.

Related patterns: Correlation Identifier, Message Router, Request-Reply, Return Address, Wire Tap

Test Message

The Control Bus describes a number of approaches to monitor the health of the message
processing system. Each component in the system can publish periodic "heartbeat" messages to
the control bus in order to keep the monitoring mechanism informed that the component is still
active. The heartbeat messages can contain vital stats of the component as well, such as the
number of messages processed, the average time required to process a message or the percentage
of CPU utilization on the machine.

What happens, though, if a component is actively processing messages, but garbles outgoing
messages due to an internal fault?

A simple heartbeat mechanism will not detect this error condition because it operates only at a
component level and is not aware of application message formats.

Therefore, use Test Message to assure the health of message processing components (see
Figure).

The Test Message pattern relies on the following components:

• The Test Data Generator creates messages to be sent to the component for testing. Test
data may be constant, driven by a test data file or generated randomly.

• The Test Message Injector inserts test data into the regular stream of data messages sent
to the component. The main role of the injector is to tag messages in order to differentiate
'real' application messages from test messages. This can be accomplished by inserting a
special header field. If we have no control over the message structure, we can try to use
special values to indicate test messages (e.g. OrderID = 999999). This changes the
semantics of application data by using the same field to represent application data (the
actual order number) and control information (this is a test message). Therefore, this
approach should be used only as a last resort.

• The Test Message Separator extracts the results of test messages from the output stream.
This can usually be accomplished by using a Content-Based Router.

• The Test Data Verifier compares actual results with expected results and flags an
exception if a discrepancy is discovered. Depending on the nature of the test data, the
verifier may need access to the original test data.

An explicit Test Message Separator may not needed if the component under test supports a
Return Address. In this case the test Data Generator can include a special test channel as the Return
Address so that test messages are not passed through the remainder of the system. Effectively, the
Return Address acts as the tag for text messages.

Test Message is considered an active monitoring mechanism. Unlike passive mechanisms, active
mechanisms do not rely on information generated by the components (e.g. log files or heartbeat
messages), but actively probe the component. The advantage is that active monitoring usually
achieves a deeper level of testing since data is routed through the same processing steps as the
application messages. It also works well with components that were not designed to support
passive monitoring.

One possible disadvantage of active monitoring is the additional load placed on the processor.
We need to find a balance between frequency of test and minimizing the performance impact.
Active monitoring may also incur cost if we are being charged for the use of a component on a
pay-per-use basis. This is the case for many external components, e.g. if we request credit reports
for our customers from an external credit scoring agency.

Active monitoring does not work with all components. Stateful components may not be able to
distinguish test data from real data and may create database entries for test data. We may not
want to have test orders included in our annual revenue report!

Example: Loan Broker: Testing the Credit Bureau

In the example at the end of the chapter, we use a Test Message to actively monitor the external
Credit Bureau (see Loan Broker System Management).

Related patterns: Content-Based Router, Control Bus, Return Address, Loan Broker System
Management

Channel Purger

When Bobby and I worked on the simple JMS Request/Reply Example, we ran into a simple, but
interesting problem. The example consists of a Requestor which sends a message to a Replier and
waits for the response. The example uses two Point-to-Point Channels, RequestQueue and
ReplyQueue (see picture).

We had plastered println statements all over the code so we can see what is going on. We started
the Replier first, then the Requestor. Then a very odd thing happened. The Requestor console
window claimed to have gotten a response before the Replier ever acknowledged receiving a
request. A delay in the console output? Lacking any great ideas, we decided to shut the Replier
down and re-ran the Requestor. Odd enough, we still received a response to our request! Magic?
No, just a side effect of persistent messaging. A superfluous message was present on the
ReplyQueue. When we started the Requestor it placed a new message on the RequestQueue and
then immediately retrieved the extraneous reply message that was sitting on the ReplyQueue. We
never noticed that this was not the reply to the request the Requestor just made! Once the Replier
received the request message, it placed a new reply message on the ReplyQueue so that the 'magic'
repeated during the next test. It can be amazing (or amazingly frustrating) how persistent,
asynchronous messaging can play tricks on you in even the most simple scenarios!

How can you keep 'left-over' messages on a channel from disturbing tests or running systems?

Message Channels are designed to deliver messages reliably, even if the receiving component is
unavailable. In order to do so, the channel has to persist messages along the way. This useful
feature can cause confusing situations during testing or if one of the components misbehaves
(and does not use transactional message consumption and production). We can quickly end up
with extraneous messages stuck on channels as described above. These messages make it
impossible to pass test data into the system until the pending messages have been consumed. If
the pending messages are orders worth a few million Dollars, this is a good thing. If we are
testing or debugging a system and have a channel full of query messages or of reply messages it
can cause us a fair amount of headache.

In our simple example, some of our debugging pain could have been eased if we had used a
Correlation Identifier. Using the identifier, the Requestor would have recognized that the incoming
message is actually not the response to the request it just sent. It could then discard the 'old' reply
message or route it to an Invalid Message Channel, which would effectively remove the 'stuck'
message. In other scenarios, it is not as easy to detect duplicate or unwanted messages. For
example, if a specific message is malformed and causes the message recipient to fail, the recipient
cannot restart until the 'bad' message is removed, because it would just fail right away again. Of
course, this example requires the defect in the recipient to be corrected (no malformed message
should cause a component failure), but removing the message can get the system up and running
quickly until the defect is corrected.

Another way to avoid left-over messages in channels is to use tomporary channels (e.g., JMS
provides the method createTemporaryQueue for this purpose). These channels are intended for
request-reply applications and lose all messages once the application closes its connection to the
messaging system. But again, this approach is limited to a simple request-reply example and
does not protect against other messages being left over on other channels that need to be
permanent.

It may be tempting to assume that transaction management can eliminate the 'extra message'
scenario because message consumption, message processing and message publication are
covered in a transaction. So if a component aborts in the middle of processing a message, the
message would not be considered consumed. Likewise, a reply message would not be published
until the component signals the final 'commit' to send the message. We need to keep in mind
though, that transactions do not protect us against programming errors. In our simple
request-reply example, a programmer error may have caused the Requestor to not read a
response from the ReplyQueue channel. As a result, despite potential transactionality, a message is
stuck on that channel causing the symptoms described above.

Use a Channel Purger to remove unwanted messages from a channel.

A simple Channel Purger simply remove all the messages from a channel. This may be sufficient
for test scenarios where we want to reset the system into a consistent state. If we are debugging a
production system we may need to remove individual message or a set of messages based on
specific criteria, such as the message ID or the values of specific message fields.

In many cases it is alright for the Channel Purger to simply delete the message from the channel.
In other cases, we may need the Channel Purger to store the removed messages for later inspection
or replay. This is useful if the messages on a channel cause a system to malfunction, so that we
need to remove them to continue operation. However, once the problems are corrected, we want
to re-inject the message(s) so that the system does not lose the contents of the message. This may
also include the requirement to edit message contents before re-injecting the message. This type
of function combines some of the features of a Message Store and a Channel Purger.

Example: Channel Purger in JMS

This example shows a simple Channel Purger implemented in Java. This example simply removes
all messages on a channel. The ChannelPurger class references two external classes:

• JMSEndpoint - The base class for any JMS particpant. Provides pre-initialized instance variables for a
Connection and Session instance.

• JNDIUtil - Implements helper functions to encapsulate the lookup of JMS objects via JNDI.

Both classes are described in more detail in JMS Request/Reply Example.

import javax.jms.JMSException;

import javax.jms.MessageConsumer;

import javax.jms.Queue;

public class ChannelPurger extends JmsEndpoint

{

 public static void main(String[] args)

 {

 if (args.length != 1) {

 System.out.println("Usage: java ChannelPurger <queue_name>");

 System.exit(1);

 }

 String queueName = new String(args[0]);

 System.out.println("Purging queue " + queueName);

 ChannelPurger purger = new ChannelPurger();

 purger.purgeQueue(queueName);

 }

 private void purgeQueue(String queueName)

 {

 try {

 initialize();

 connection.start();

 Queue queue = (Queue) JndiUtil.getDestination(queueName);

 MessageConsumer consumer = session.createConsumer(queue);

 while (consumer.receiveNoWait() != null)

 System.out.print(".");

 connection.stop();

 } catch (Exception e) {

 System.out.println("Exception occurred: " + e.toString());

 } finally {

 if (connection != null) {

 try {

 connection.close();

 } catch (JMSException e) {

 // ignore

 }

 }

 }

 }

}

Related patterns: Correlation Identifier, Invalid Message Channel, Message Channel, Message Store,
Point-to-Point Channel, JMS Request/Reply Example

12．Interlude：System Management Example

Loan Broker System Management

This section uses a more elaborate example to demonstrate how the system management patterns
introduced in this section can be used to monitor and control a messaging solution. The example
builds upon the C# and MSMQ implementation of the Loan Broker example from Chapter ?? (see
Asynchronous Implementation with MSMQ). We augment rather than modify the original example
solution so it is not critical that you reviewed all the code of the original example. As with the
original example implementation, the intent of this section is not to explain the use of
MSMQ-specific API's but rather to illustrate the implementation of the patterns in this book using
a queue-oriented messaging system. The structure of the solution would look very similar when
implemented in Java using JMS queues or IBM WebSphere MQ. Because we focus mostly on the
design decisions and trade-offs, this section should be valuable to you even if you are not a C# or
MSMQ developer.

Instrumenting the Loan Broker

The loan broker implementation consists of the following four key components (see picture):

• The Test Client makes requests for loan quotes.
• The Loan Broker acts as the central process manager and coordinates the communication

between the credit bureau and the banks.
• The Credit Bureau provides a service to the Loan Broker, computing customer's credit

scores.
• Each Bank receives a quote request from the Loan Broker and submits an interest rate

quote according to the loan parameters.

In most integration scenarios we do not have access to the application internals but are limited to
monitoring and managing components from the outside. To make this example as realistic as
possible, we decide to treat each of the components as a black box. Keeping this constraint in
mind, we want the management solution to meet the following requirements:

• Management Console: We want a single front-end that displays the health of all
components and allows us to take compensating actions if something goes wrong.

• Loan Broker Quality of Service: In the original solution we developed a test client that
monitors the loan broker's response times between quote request and response. In a real
production scenario clients will not perform this function for us (they may, however,
complain that the system is too slow). Therefore, we want the management solution to
capture this information and relay it to the management console.

• Verify the Credit Bureau Operation: The Credit Bureau is an external service provided by
a third party. We want to ensure the correct operation of this service by periodically
sending test messages.

• Credit Bureau Failover: If the Credit Bureau malfunctions we want to temporarily
redirect the credit request messages to another service provider.

Management Console

We want to be able to collect metrics from multiple components in a single point so we can assess
the health of the overall solution from a central spot. The management console also has to be able
to control message flow and component parameters so that we can address outages by rerouting
messages or changing component behavior.

The management console communicates with the individual components via messaging. It uses a
separate Control Bus that only contains messages related to system management and not
application data.

Because this is a book on enterprise integration and not on user interface design, we keep the
management console very, very simple. Many vendors offer real-time data displays or you can
even achieve visual miracles with Visual Basic and Microsoft Office components such as Excel.
Also, many operating system or programming platforms offer their own instrumentation
frameworks, e.g. Java/JMX (Java Management Extensions) or Microsoft's WMI (Windows
Management Instrumentation). We decide to hand-roll our solution to make it less dependent on
a specific vendor's API and to demonstrate the inner workings of a monitoring solution.

Loan Broker Quality of Service

The first requirement for the management solution is to measure the quality of service that the
loan broker provides to its clients. For this type of monitoring we are not interested in the
business content of the individual messages, i.e. the interest rate offered to the client, but only in
the time elapsed between the request message and the reply message. The tricky part in tracking

the time between these two messages is the fact that the client can specify the channel for the
reply message via a Return Address. So we cannot listen on a fixed channel for the reply. Luckily,
the Smart Proxy pattern solves this dilemma for us. A Smart Proxy intercepts request messages,
stores the Return Address supplied by the client and replaces it with a fixed channel address. As a
result, the service (the Loan Broker in our case) sends all reply messages to one channel. The
Smart Proxy listens to this channel and correlates incoming reply messages to stored request
messages. It then forwards the reply message to the original Return Address specified by the client
(see picture).

Instrumenting the Loan Broker with a Smart Proxy

In order to take advantage of the Smart Proxy functionality, we "insert" the Smart Proxy between
the client and the Loan Broker (see picture). This insertion is transparent to the client because the
Smart Proxy listens on the same channel that the Loan Broker originally listened on
(loanrequestQueue). We now start the Loan Broker with new parameters so that it listens on the
brokerRequestQueue channel instead of the loanrequestQueue. The Smart Proxy instructs the Loan
Broker to send all reply messages to the brokerReplyQueue channel from where it forwards the
messages back to the correct Return Address originally specified by the client.

We want to use the Smart Proxy to measure both the response time for loan requests and the
number of requests being processed by the loan broker at any one time. The Smart Proxy can
measure the time elapsed between request and reply messages by capturing the time that the
request message was received. When it receives the associated reply message, the Smart Proxy
subtracts the request time from current time to compute the time elapsed between request and
reply. The Smart Proxy can estimate how many active requests the Loan Broker is managing at
one time by counting how many outstanding request messages there are (i.e. request messages
that have not yet received reply messages). The Smart Proxy cannot distinguish between
messages queued up on the brokerRequestQueue from messages that the Loan Broker started
processing, so this metric equals the sum of both. We can update the number of outstanding
request messages whenever we receive a request message or a reply message.

The Smart Proxy passes the metrics information to the management console for monitoring and
analysis. We could send the statistics for every single message but that would clutter our network
if we deal with high message volumes. Inserting a Smart Proxy into the message flow already
doubles the number of message sent (two request and reply messages instead of one each) so we
want to avoid sending another control message for each request message. Instead we use a timer
so that the Smart Proxy sends a metrics message to the Control Bus in predefined intervals, e.g.
every 5 seconds. The metrics message can either contain summary metrics (e.g. the maximum,
minimum and average response time) or the detailed info for all messages that passed through
during the interval. In order to keep the metrics messages small and the management console
simple we decide to just pass the summary metrics to the console.

For the implementation of the Loan Broker smart proxy, we reuse the SmartProxy base classes
introduced in the Smart Proxy pattern. We subclass the SmartProxyBase,
SmartProxyRequestConsumer, and SmartProxyReplyConsumer classes (see class diagram). Please see
the Smart Proxy pattern for the source code for these classes.

Loan Broker Smart Proxy Class Diagram

Just like the original SmartProxy, the new LoanBrokerProxy contains two separate message
consumers, one for incoming request message from the client (LoanBrokerProxyRequestConsumer)
and one for incoming reply messages from the Loan Broker (LoanBrokerProxyReplyConsumer).
Both consumer classes inherit from their respective base classes and add a new implementation
of the AnalyzeMessage method.

Let's have a look at the implementation of the LoanBrokerProxy class. The class maintains two
ArrayLists with metrics, performanceStats and queueStats ArrayLists. performanceStats collects
data points of response-reply time intervals in seconds while queueStats collects data points of
the number of outstanding request messages (those either queued up in the brokerRequestQueue
or in process by the Loan Broker). When the pre-programmed timer triggers, the method

OnTimerEvent moves the data from both collections and stores them temporary snapshot. We
have to perform any further analysis of the data with this snapshot copy because the message
consumers continue to add new data points as messages are received.

LoanBrokerProxy Class

public class LoanBrokerProxy : SmartProxyBase

{

 protected MessageQueue controlBus;

 protected ArrayList performanceStats;

 protected ArrayList queueStats;

 protected int interval;

 protected Timer timer;

 public LoanBrokerProxy(MessageQueue inputQueue, MessageQueue serviceRequestQueue,

MessageQueue serviceReplyQueue, MessageQueue controlBus, int interval) :

 base (inputQueue, serviceRequestQueue, serviceReplyQueue)

 {

 messageData = Hashtable.Synchronized(new Hashtable());

 queueStats = ArrayList.Synchronized(new ArrayList());

 performanceStats = ArrayList.Synchronized(new ArrayList());

 this.controlBus = controlBus;

 this.interval = interval;

 requestConsumer = new LoanBrokerProxyRequestConsumer(inputQueue,

serviceRequestQueue, serviceReplyQueue, messageData, queueStats);

 replyConsumer = new LoanBrokerProxyReplyConsumer(serviceReplyQueue, messageData,

queueStats, performanceStats);

 }

 public override void Process()

 {

 base.Process();

 TimerCallback timerDelegate = new TimerCallback(OnTimerEvent);

 timer = new Timer(timerDelegate, null, interval*1000, interval*1000);

 }

 protected void OnTimerEvent(Object state)

 {

 ArrayList currentQueueStats;

 ArrayList currentPerformanceStats;

 lock (queueStats)

 {

 currentQueueStats = (ArrayList)(queueStats.Clone());

 queueStats.Clear();

 }

 lock (performanceStats)

 {

 currentPerformanceStats = (ArrayList)(performanceStats.Clone());

 performanceStats.Clear();

 }

 SummaryStats summary = new SummaryStats(currentQueueStats,

currentPerformanceStats);

 if (controlBus != null)

 controlBus.Send(summary);

 }

}

The LoanBrokerProxy uses the SummaryStats structure to condense the individual data points into
maximum, minimum and average values and then sends the summary data to the Control Bus.
We could make the evaluation more efficient by updating the summary statistics with each
incoming message so that we have to store only the summary data and not each datapoint. On
the other hand, deferring the computation allows us to change the amount of detail we want to
publish to the Control Bus.

The LoanBrokerProxyRequestConsumer class is rather simple. The base class
SmartProxyRequestConsumer takes care of storing relevant message data in the messageData
Hashtable so that we can derive the current number of outstanding request messages from the
size of the Hashtable. The LoanBrokerProxyRequestConsumer maintains a reference to the
queueStats collection inside the LoanBrokerProxy so that it can add the new data point to this
collection.

LoanBrokerProxyRequestConsumer Class

public class LoanBrokerProxyRequestConsumer : SmartProxyRequestConsumer

{

 ArrayList queueStats;

 public LoanBrokerProxyRequestConsumer(MessageQueue requestQueue, MessageQueue

serviceRequestQueue, MessageQueue serviceReplyQueue, Hashtable messageData, ArrayList

queueStats) :

 base(requestQueue, serviceRequestQueue, serviceReplyQueue, messageData)

 {

 this.queueStats = queueStats;

 }

 protected override void ProcessMessage(Message requestMsg)

 {

 base.ProcessMessage(requestMsg);

 queueStats.Add(messageData.Count);

 }

}

The LoanBrokerProxyReplyConsumer collects two metrics when a reply message arrives. First, it
computes the time it took between sending the request message and receiving the reply message
and adds that metric to the performanceStats collection. Second, it captures the remaining
number of outstanding requests and adds that number to the queueStats collection.

LoanBrokerProxyReplyConsumer Class

public class LoanBrokerProxyReplyConsumer : SmartProxyReplyConsumer

{

 ArrayList queueStats;

 ArrayList performanceStats;

 public LoanBrokerProxyReplyConsumer(MessageQueue replyQueue, Hashtable messageData,

ArrayList queueStats, ArrayList performanceStats) :

 base(replyQueue, messageData)

 {

 this.queueStats = queueStats;

 this.performanceStats = performanceStats;

 }

 protected override void AnalyzeMessage(MessageData data, Message replyMessage)

 {

 TimeSpan duration = DateTime.Now - data.SentTime;

 performanceStats.Add(duration.TotalSeconds);

 queueStats.Add(messageData.Count);

 }

}

The SummaryStats structure computes maxima, minima and averages based on the captured data.
It can derive the number of request messages processed by subtracting the number of
performance data points (collected only for reply messages) from the number of queue data
points (collected for request and reply messages). The implementation of this structure is quite
trivial so that we decided not to fill a whole page with the code.

Once we insert the new Loan Broker proxy into the message stream we can start collecting
performance metrics. To collect some example data, we configured two test clients to make 50
loan quote requests each. The proxy collected the following results (we used a simple XSL
transform to render an HTML table off the metric data published in XML format to the
controlBusQueue):

Date #Requests #Replies
minProcess

ingTime

avgProce

ssingTim

e

maxProcess

ingTime

minQueu

eSize

avgQue

ueSize

maxQueueSiz

e

14:11:02.9644424 0 0 0.00 0.00 0.00 0 0 0

14:11:07.9718424 89 7 0.78 2.54 3.93 1 42 82

14:11:12.9792424 11 9 4.31 6.43 8.69 83 87 91

14:11:17.9866424 0 8 9.39 10.83 12.82 77 80 84

14:11:22.9940424 0 8 13.80 15.75 17.48 69 72 76

14:11:28.0014424 0 7 18.37 20.19 22.18 62 65 68

14:11:33.0088424 0 6 22.90 24.83 26.94 56 58 61

14:11:38.0162424 0 10 27.74 29.53 31.62 46 50 55

14:11:43.0236424 0 9 31.87 34.47 36.30 37 41 45

14:11:48.0310424 0 7 36.87 39.06 40.98 30 33 36

14:11:53.0384424 0 9 41.75 43.82 45.14 21 25 29

14:11:58.0458424 0 8 45.92 47.67 49.67 13 16 20

14:12:03.0532424 0 8 50.86 52.58 54.59 5 8 12

14:12:08.0606424 0 4 55.41 55.96 56.69 1 2 4

14:12:13.0680424 0 0 0.00 0.00 0.00 0 0 0

Loaded into an Excel chart, the queue size data looks like this:

Loan Broker Smart Proxy Statistics

We can see that he two test clients pretty much flooded the Loan Broker, peaking at about 90
pending requests. The Loan Broker then processes the requests at a stable rate of about 2 requests
per second. Due to the large number of queued up requests, the the response times are pretty
poor, peaking at almost 1 minute. The good news is that the Loan Broker handles a large number
of sudden requests gracefully, while the bad news is that the response times are very long. In
order to improve response times we could decide to execute multiple Loan Broker instances or
multiple Credit Bureau instances (the Credit Bureau service turned out to be a bottleneck before).

Verify the Credit Bureau Operation

The second requirement for the management solution is to monitor the correct operation of the
external Credit Bureau service. The Loan Broker accesses this service to obtain credit scores for
customers requesting a loan quote. The banks require this information to provide an accurate
quote.

In order to verify the correct operation of the external Credit Bureau service we send periodic
Test Messages to the service. Because the Credit Bureau service supports a Return Address it is easy
to inject a Test Message without disturbing the existing message flow. We simply provide a
dedicated reply channel for test messages and avoid the need for a separate test message
separator.

Monitoring the Credit Bureau Service

In order to verify the correct operation of the Credit Bureau service we need a Test Data Generator
and a Test Data Verifier. The test data generator creates test data to be sent to the service under
test. A Credit Bureau test message is very simple; the only field that is required is a social security
number (SSN). For our tests we use a special, fixed SSN that identifies a fictitious person. This
allows us to verify the result data with preestablished results. This way we can not only check
whether we receive a reply message but also verify the content of the message. In our simple
example, the Credit Bureau is programmed to return random results regardless of the incoming
SSN. As a result, our test data verifier does not check for specific result values but instead verifies
whether the results are within the allowed range (e.g. 300 - 900 for a credit score). If the results
fall outside the allowed range (for example because a computational error score set the score to
zero), the test data verifier notifies the management console with a message.

The test data verifier also checks the response time of the external service. If we do not receive a
reply message within a preset time interval we alert the management console. To minimize
network bandwidth, the test data verifier notifies the console only if the response is delayed or
malformed, not when the service is operating correctly. The only exception to this rule occurs
when the monitor receives a correct reply message from the service subsequent to detecting an
error. In that case, the monitor sends a "service OK" message to the management console to
indicate that the credit bureau is working correctly again. Lastly, during start-up the monitor
sends a message to the console to announce its existence. This message allows the console to
"discover" all active monitors so it can display the status for each.

The monitor implementation uses two separate timers. The Send Timer determines the time
interval between the last received message or the last timeout event and sending the next Test
Message. The Timeout Timer is started whenever the monitor sends a request message. If a reply
message arrives within the specified timeout interval, the Timeout Timer is reset and restarted
with the next request message. If the monitor does not receive a reply message within the
specified interval, the Timeout timer triggers and sends the monitor sends an error message to
the control bus. It then starts a new Send Timer to initiate a new request message after the send

interval (see diagram). A real-life scenario is likely to use a relatively short timeout (a few
seconds) and a larger send interval (e.g., one minute).

Monitoring the Credit Bureau Service

The implementation of the monitor is relatively simple and only requires a single class. The
Monitor class inherits from the MessageConsumer introduced in the Smart Proxy pattern. This class
configures and inbound channel and starts an Event-Driven Consumer to receive messages. For
each incoming message it invokes the virtual ProcessMessage method. An inheriting class can
simply override this method to add its own processing.

The Process method instructs a MessageConsumer to start consuming messages. The Monitor class
augments the base implementation of this method by starting the Send Timer. When this timer
triggers, it invokes the OnSendTimerEvent method. The Process message also sends a message to
the Control Busto announce its existence.

Monitor Class - Sending Messages

public override void Process()

{

 base.Process();

 sendTimer = new Timer(new TimerCallback(OnSendTimerEvent), null, interval*1000,

Timeout.Infinite);

 MonitorStatus status = new MonitorStatus(MonitorStatus.STATUS_ANNOUNCE, "Monitor

On-Line", null, MonitorID);

 Console.WriteLine(status.Description);

 controlQueue.Send(status);

 lastStatus = status.Status;

}

protected void OnSendTimerEvent(Object state)

{

 CreditBureauRequest request = new CreditBureauRequest();

 request.SSN = SSN;

 Message requestMessage = new Message(request);

 requestMessage.Priority = MessagePriority.AboveNormal;

 requestMessage.ResponseQueue = inputQueue;

 Console.WriteLine(DateTime.Now.ToString() + " Sending request message");

 requestQueue.Send(requestMessage);

 correlationID = requestMessage.Id;

 timeoutTimer = new Timer(new TimerCallback(OnTimeoutEvent), null, timeout*1000,

Timeout.Infinite);

}

The OnSendTimerEvent method creates a new request message. The only parameter in the request
message is the customer's social security number (SSN). The method specifies a fixed SSN. The
method also saves the message ID to verify the Correlation Identifier of any incoming reply
messages. Lastly, it starts the timeoutTimer so that the monitor is being notified after a set time
interval if no reply message is received.

The method sets the test message's Priority property to AboveNormal to make sure that queued
up application messages do not let the service appear as if it was not available. Using a higher
priority for Test Messages causes the message queue to deliver these messages ahead of queued
up application messages. Setting a higher message priority is safe in this case because test data
generator injects a very small volume of Test Messages. If we injected a large volume of high
priority messages into the request channel we could interrupt the flow of application messages.
This would definitely violate the intention of a management solution to be as minimally intrusive
as possible.

The ProcessMessage is the heart of the Monitor class. It implements the test message verifier,
evaluating incoming reply messages. After stopping the timeout timer the method checks the
incoming message for the correct Correlation Identifier, correct data type of the message body and
reasonable values inside the message body. If any of these tests fail, the method sets up a
MonitorStatus structure and sends it to the Control Bus channel. The monitor also tracks the
previous status is in the lastStatus variable. If the status changes from "error" to "OK", the
ProcessMessage method also sends a notification to the Control Bus.

Monitor Class - Receiving Messages

protected override void ProcessMessage(Message msg)

{

 Console.WriteLine(DateTime.Now.ToString() + " Received reply message");

 if (timeoutTimer != null)

 timeoutTimer.Dispose();

 msg.Formatter = new XmlMessageFormatter(new Type[] {typeof(CreditBureauReply)});

 CreditBureauReply replyStruct;

 MonitorStatus status = new MonitorStatus();

 status.Status = MonitorStatus.STATUS_OK;

 status.Description = "No Error";

 status.ID = MonitorID;

 try

 {

 if (msg.Body is CreditBureauReply)

 {

 replyStruct = (CreditBureauReply)msg.Body;

 if (msg.CorrelationId != correlationID)

 {

 status.Status = MonitorStatus.STATUS_FAILED_CORRELATION;

 status.Description = "Incoming message correlation ID does not match

outgoing message ID";

 }

 else

 {

 if (replyStruct.CreditScore < 300 || replyStruct.CreditScore > 900 ||

 replyStruct.HistoryLength < 1 || replyStruct.HistoryLength > 24)

 {

 status.Status = MonitorStatus.STATUS_INVALID_DATA;

 status.Description = "Credit score values out of range";

 }

 }

 }

 else

 {

 status.Status = MonitorStatus.STATUS_INVALID_FORMAT;

 status.Description = "Invalid message format";

 }

 }

 catch (Exception e)

 {

 Console.WriteLine("Exception: {0}", e.ToString());

 status.Status = MonitorStatus.STATUS_INVALID_FORMAT;

 status.Description = "Could not deserialize message body";

 }

 StreamReader reader = new StreamReader (msg.BodyStream);

 status.MessageBody = reader.ReadToEnd();

 Console.WriteLine(status.Description);

 if (status.Status != MonitorStatus.STATUS_OK ||

 (status.Status == MonitorStatus.STATUS_OK && lastStatus !=

MonitorStatus.STATUS_OK))

 {

 controlQueue.Send(status);

 }

 lastStatus = status.Status;

 sendTimer.Dispose();

 sendTimer = new Timer(new TimerCallback(OnSendTimerEvent), null, interval*1000,

Timeout.Infinite);

}

If no message arrives in the specified interval, the timeoutTimer will invoke the OnTimeoutEvent
method. This method sends a MonitorStatus message to the Control Bus and starts a new Send
timer so that a new request message is sent after the interval.

Monitor Class - Timeout

protected void OnTimeoutEvent(Object state)

{

 MonitorStatus status = new MonitorStatus(MonitorStatus.STATUS_TIMEOUT, "Timeout",

null, MonitorID);

 Console.WriteLine(status.Description);

 controlQueue.Send(status);

 lastStatus = status.Status;

 timeoutTimer.Dispose();

 sendTimer = new Timer(new TimerCallback(OnSendTimerEvent), null, interval*1000,

Timeout.Infinite);

}

Credit Bureau Failover

Now that we can monitor the status of the external Credit Bureau service we want to use this
data to implement a failover scheme so that the Loan Broker can continue operating even when
the Credit Bureau service fails. It is worthwhile noting that Point-to-Point Channels already
provide a basic form of failover. When we use multiple Competing Consumers on a single
Point-to-Point Channel, the failure of one consumer will not interrupt processing as long as the
other consumer(s) still operate. When multiple consumers are active, they split the load,
effectively implementing a simple load balancing mechanism. Why would we need to implement
an explicit fail-over mechanism? When using external services, we may be limited to simple
channels that do not support Competing Consumers, e.g. SOAP over HTTP. Also, we may not want

multiple services to load balance. For example, we may have a volume agreement with the
primary service provider that gives us substantial discounts if we meet certain usage quotas.
Splitting the traffic across two providers will likely cost us more. Alternatively, we may be using
a low-cost provider as out primary service provider and only want to switch over to a premium
provider when the low-cost provider fails. (For an excellent discussion of architectural decisions
driven by licensing issues see [Hohmann]) .

In order to implement explicit failover, we insert a Message Router into the credit bureau request
channel (see picture). This router routes the request either to the primary credit bureau service
(green arrows) or the secondary credit bureau service (red arrows). Because the secondary service
may use a different message format than the first service, we wrap the secondary service with a
pair of Message Translators. The Message Router is a Context-Based Router, controlled by the
management console over the Control Bus. The management console gets monitoring data from
the Credit Bureau Monitor we designed in the previous section. If the monitor indicates a failure,
the management console instructs the Message Router to reroute the traffic to the secondary
service provider (see picture).

Explicit Failover with a Context-Based Router

Even while the request message traffic is re-routed to the secondary service provider, the monitor
keeps on sending test messages to the primary provider. When the monitor confirms the correct
operation of the service, the console instructs the Message Router to return to routing request
messages to the primary provider. The solution diagram does not show a monitor for the
secondary service provider even though it would be very easy use a second instance of the credit
bureau monitor to monitor the backup Credit Bureau service.

Let's look at the implementation of the Context-Based Router. ContextBasedRouter inherits from
our trusty MessageConsumer base class to process incoming messages. The ProcessMessage method

checks the value of the variable control and routes incoming messages to either the primary or
secondary output channel.

ContextBasedRouter Class

delegate void ControlEvent(int control);

class ContextBasedRouter : MessageConsumer

{

...

 protected override void ProcessMessage(Message msg)

 {

 if (control == 0)

 {

 primaryOutputQueue.Send(msg);

 }

 else

 {

 secondaryOutputQueue.Send(msg);

 }

 }

 protected void OnControlEvent(int control)

 {

 this.control = control;

 Console.WriteLine("Control = " + control);

 }

}

The variable control can be set by invoking the OnControlEvent method. This is the purpose of
the ControlReceiver class. This class also inherits from MessageConsumer as it listens for messages
from the control channel. The ContextBasedRouter class supplies the ControlReceiver with a
delegate of type ControlEvent to invoke when it receives a control event with a numeric value. If
you have not come across delegates, they are a really neat, type-safe way to implement callbacks
without having to implement another interface or relegating to function pointers ([Box] goes into
all the gory details).

ControlReceiver Class

class ControlReceiver : MessageConsumer

{

 protected ControlEvent controlEvent;

 public ControlReceiver(MessageQueue inputQueue, ControlEvent controlEvent) : base

(inputQueue)

 {

 this.controlEvent = controlEvent;

 }

 protected override void ProcessMessage(Message msg)

 {

 String text = (string)msg.Body;

 Double resNum;

 if (Double.TryParse(text, NumberStyles.Integer, NumberFormatInfo.InvariantInfo,

out resNum))

 {

 int control = int.Parse(text);

 controlEvent(control);

 }

 }

}

Enhancing the Management Console

The first version of the management console was so simple that we did not even bother showing
the code. All it could do was receive a message and write the message content to a file for later
analysis (such as rendering performance graphs from Excel). Now we want to inject some more
intelligence into the management console. First, when the primary Credit Bureau Monitor
indicates a failure, the management console needs to instruct the Context-Based Router to reroute
messages to the secondary service provider. We opted to implement this functionality inside the
management console so that we can decouple the monitor and the Context-Based Router
(effectively, the management console acts as a Mediator as defined in [GoF]). Also, implementing
the failover logic in a central location gives us a single point of maintenance for the system
management rules. Commercial management consoles typically include configurable rules
engines to determine appropriate corrective actions based on events on the Control Bus.

Second, we want to build a simple user interface for the management console that displays the
current state of the system. Obtaining a "big picture" view of a messaging system can be quite
difficult, especially if message paths change dynamically. It does not take a lot of components to
make it difficult to reconcile where messages flow. Our user interface is simple but nevertheless
quite useful. We use the iconic language defined in this book to represent the interaction between
components. For now, the user interface only displays the Credit Bureau failover portion of the
system, consisting of two services and one Context-Based Router (see picture).

The Management Console Indicates That Both Credit Bureau Services Are Active

When the Monitor detects a failure and instructs the router to re-route the traffic, we want to
update the user interface to reflect the new status (see picture). The router shows the new route
for the request messages and the primary Credit Bureau component changes colors to indicate
the failure.

The Management Console Indicates That The Primary Credit Bureau Failed and Traffic is Being Re-Routed

Let's have a brief look at the code behind this console. We will focus on the system management
part of the code and not dive into the details of the code that renders the pretty user interface
pictures. First, the management console needs to be able to retrieve status messages from the
monitor component. To make the console as robust as possible, we access the message content in
a loosely coupled fashion, reading individual fields from the XML payload. This approach helps

keep the management console operational even if the individual components decide to add some
fields to the message.

Not surprisingly, the console class also inherits from our good friend MessageConsumer, so we
only show the ProcessMessage method here. The component simply reads the message's
BodyStream into a string variable and passes it to the different components for analysis.

ManagementConsole - ProcessMessage

public delegate void ControlMessageReceived(String body);

public class ManagementConsole : MessageConsumer

{

 protected Logger logger;

 public MonitorStatusHandler monitorStatusHandler;

 public ControlMessageReceived updateEvent;

 public ManagementConsole(MessageQueue inputQueue, string pathName) :

base(inputQueue)

 {

 logger = new Logger(pathName);

 monitorStatusHandler = new MonitorStatusHandler();

 updateEvent += new ControlMessageReceived(logger.Log);

 updateEvent += new

ControlMessageReceived(monitorStatusHandler.OnControlMessage);

 }

 protected override void ProcessMessage(Message m)

 {

 Stream stm = m.BodyStream;

 StreamReader reader = new StreamReader (stm);

 String body = reader.ReadToEnd();

 updateEvent(body);

 }

 ...

}

The ManagementConsole class uses a delegate to notify the logger and the MonitorStatusHandler.
Using a delegate allows us to easily add other classes that also listen on incoming control
messages without having to change the code inside the ProcessMessage method.

One of the components analyzing incoming control message data is the MonitorStatusHandler
class. First, this class checks whether the incoming message is a MonitorStatus message. If so it
loads the message body into an XML document to extract the relevant fields contained inside the
<ID> and the <Status> elements. It then invokes the delegate updateEvent which is of type
MonitorStatusUpdate. Any interested class inside the management console application can add a
callback method to this delegate and be notified any time a MonitorStatus message arrives. All
the component has to do is provide an implementation of a method with a signature equal to
MonitorStatusUpdate.

MonitorStatusHandler

public delegate void MonitorStatusUpdate(String ID, int Status);

public class MonitorStatusHandler

{

 public MonitorStatusUpdate updateEvent;

 public void OnControlMessage(String body)

 {

 XmlDocument doc = new XmlDocument();

 doc.LoadXml(body);

 XmlElement root = doc.DocumentElement;

 if (root.Name == "MonitorStatus")

 {

 XmlNode statusNode = root.SelectSingleNode("Status");

 XmlNode idNode = root.SelectSingleNode("ID");

 if (idNode!= null && statusNode != null)

 {

 String msgID = idNode.InnerText;

 String msgStatus = statusNode.InnerText;

 Double resNum;

 int status = 99;

 if (Double.TryParse(msgStatus, NumberStyles.Integer,

NumberFormatInfo.InvariantInfo, out resNum))

 {

 status = (int)resNum;

 }

 updateEvent(msgID, status);

 }

 }

 }

}

In our example, the first two components listening to the MonitorStatusUpdate event triggered by
the MonitorStatusHandler are two user interface controls representing the primary and secondary
Credit Bureau service in the user interface form. Each user interface control filters the events for
the identifier that is unique to the respective component that is being monitored. When the status
of the monitored component changes, the user interface control changes the color of the
component. The following routine that is executed during the initialization of the display form
ties the two Credit Bureau display controls to the monitorStatusHandler of the management
console:

Console Form Initialization

console = new ManagementConsole(controlBusQueue, logFileName);

primaryCreditBureauControl = new ComponentStatusControl("Primary Credit Bureau",

"PrimaryCreditService");

primaryCreditBureauControl.Bounds = new Rectangle(300, 30, COMPONENT_WIDTH,

COMPONENT_HEIGHT);

secondaryCreditBureauControl = new ComponentStatusControl("Secondary Credit Bureau",

"SecondaryCreditService");

secondaryCreditBureauControl.Bounds = new Rectangle(300, 130, COMPONENT_WIDTH,

COMPONENT_HEIGHT);

console.monitorStatusHandler.updateEvent += new

MonitorStatusUpdate(primaryCreditBureauControl.OnMonitorStatusUpdate);

console.monitorStatusHandler.updateEvent += new

MonitorStatusUpdate(secondaryCreditBureauControl.OnMonitorStatusUpdate);

Another component listening to the MonitorStatusUpdate events is the FailOverHandler. This
component is a non-visual component that analyzes status messages to determine whether a
failover switch should be set. If the status of the monitor has changed (we use a logical XOR
denoted by the '^' operator) the FailOverHandler sends a command message to the designated
command channel. In our case, this command channel is connected to the Context-Based Router
who will start re-routing credit score request messages.

FailOverHandler Class

public delegate void FailOverStatusUpdate(String ID, string Command);

public class FailOverHandler

{

 ...

 public void OnMonitorStatusUpdate(String ID, int status)

 {

 if (componentID == ID)

 {

 if (IsOK(status) ^ IsOK(currentStatus))

 {

 String command = IsOK(status) ? "0" : "1";

 commandQueue.Send(command);

 currentStatus = status;

 updateEvent(ID, command);

 }

 }

 }

 protected bool IsOK(int status)

 {

 return (status == 0 || status >= 99);

 }

}

The FailOverHandler also invokes the updateEvent, which is a delegate of type
FailOverStatusUpdate. Similar to the MonitorStatusHandler we can register any component that
implements a method of this type to receive update notifications whenever the FailOverHandler
changes status. In our example, we register the visual FailOverControl to receive these events so
that it can redraw whenever the failover status changes. The console user interface initialization
routine establishes the connection between these components:

Console Form Initialization

failOverControl = new FailOverControl("Credit Bureau Failover",

"PrimaryCreditService");

failOverControl.Bounds = new Rectangle(100, 80, ROUTER_WIDTH, COMPONENT_HEIGHT);

FailOverHandler failOverHandler = new FailOverHandler(commandQueue,

"PrimaryCreditService");

console.monitorStatusHandler.updateEvent += new

MonitorStatusUpdate(failOverHandler.OnMonitorStatusUpdate);

failOverHandler.updateEvent += new

FailOverStatusUpdate(failOverControl.OnMonitorStatusUpdate);

Connecting the individual components inside the management console through delegates and
events results in a loosely coupled architecture. This architecture allows us to reuse the
individual components and re-compose them into different constellations similar to the Pipes and
Filters architectural style introduced at the beginning of the book. Essentially, passing messages
arriving on the Control Bus by using delegates resembles creating an application-internal
Publish-Subscribe Channel. Because the control bus events arrive on a Point-to-Point Channel, we

have to use a single consumer who then publishes the event to any interested "subscriber" inside
the application.

The following collaboration diagram illustrates the propagation of events between the individual
components.

Propagation of Events Inside the Management Console

Using a user-interface console to visualize the message flow between individual components is a
powerful system management tool. Some vendors include development suites that allow
designers to visually arrange components and connect their input and outputs ports to create
distributed message-flow application. For example, Fiorano's Tifosi product (www.fiorano.com)
includes the Distributed Applications Composer that allows the design of a distributed solution from
a single graphical user interface even though each component may execute on a different
machine or platform. This tool uses a Control Bus to connect all distributed components to a
central management and monitoring console.

Our simple example requires the management console hard-code the visual connection between
the individual components, e.g. to draw a line between the failover router and the Credit Bureau
components. Many integration tools such as Tifosi allow the user to design the solution from the
beginning using a graphical user interface. This approach makes it easy to use the graphical
design to display the status of the solution.

In some cases we may analyze the message flow in an existing messaging solution to create a
graphical representation of the system. There are two fundamental approaches to perform this
type of analysis. A Static Analysis analyses the channels that each component publishes and
subscribes to. If one component publishes to the same channel another component subscribes to,

the tool can draw a connecting line between the two components. Storing this information in a
central repository (as supported by many EAI tool suites, for example TIBCO ActiveEnterprise) is
a huge benefit for this type of analysis. In the absence of such a repository, we can inspect
individual messages and reverse-engineer connections between components based on the origin
of messages arriving at a particular component. This task is greatly simplified if the participating
components support the creation of a Message History. Without the help of a Message History, we
can still reconstruct the flow of messages if each message contains a field specifying the sender of
the message (many systems include such a field for authentication purposes).

Limitations of This Example

Unfortunately, in order to fit this example into the scope of a single chapter, we had to make
some simplifying assumptions. For example, our failover mechanism does not deal with the
messages that are already queued up when the primary Credit Bureau service fails -- these
messages remain queued up until the service is reinstated. The Loan Broker is able to continue
functioning because it correlates incoming response message to reply messages, but the loan
quote requests associated with the 'stuck' message will not be processed until the primary Credit
Bureau comes back on-line. In order to improve response times in a fail-over scenario we should
implement a re-send function that allows the Loan Broker to re-issue request messages for those
messages that are queued up indefinitely in front of a failed service. Alternatively, the fail-over
router could store all request messages that have arrived since the correct function of the service
was last confirmed. If a service failure is detected, the router could re-send all these messages
because some of them might not have been processed correctly. This approach can lead to
duplicate request messages (and associated reply messages), but since both the Credit Bureau
service and the Loan Broker messages are Idempotent Receivers this does not cause any problems --
duplicate reply messages are simply ignored.

This example demonstrated only a small subset of the system management functions that can be
implemented with the patterns in this section. For example, we could monitor message traffic
across all components, set performance thresholds, have each component send "heartbeat"
messages and more, In fact, adding robust system management to a distributed messaging
solution can require as much (or more) design and implementation effort as the original solution.

13．Integration Patterns in Practice

Case Study: Bond Trading System

(By Jonathan Simon)

It is easy to distance yourself from a large collection of patterns or a pattern language. Patterns
are the abstraction of an idea in a reusable form. Often, the very generic nature of patterns that
makes them so useful also makes them hard to grasp. Sometimes the best thing to help
understand patterns is a real world example. Not a contrived scenario of what could happen; but
what actually happens and what will happen.

This chapter applies patterns to solve problems using a discovery process. The system we will
discuss is a bond trading system that I worked with for two years from initial design through
production. We will explore scenarios and problems that were encountered and how to solve
them with patterns. This involves the decision process of choosing a pattern, as well as how to
combine and adjust patterns to suit the needs of the system. And this is all done taking into
account the forces encountered in real systems including business requirements, client decisions,
architectural and technical requirements, as well as legacy system integration. The intent of this
approach is to provide a clearer understanding of the patterns themselves through practical
application.

Building a System

A major Wall Street investment bank sets out to build a bond pricing system in an effort to
streamline the workflow of their bond trading desk. Currently, bond traders have to send prices
for a large number of bonds to several different trading venues, each with its own user interface.
The goal for the system is to minimize the minutiae of pricing all of their bonds combined with
advanced analytic functionality specific to the bond market in a single encapsulated user
interface. This means integration and communication with several components over various
communication protocols. The high level flow of the system looks like this:

High Level Flow

First, market data comes into the system. Market data is data regarding the price and other
properties of the bond representing what people are willing to buy and sell the bond for on the
free market. The market data is immediately sent to the analytics engine that alters the data.
Analytics refers to mathematical functions for financial applications that alter the prices and
other attributes of bonds. These are generic functions that use input variables to tailor the results
of the function to a particular bond. The client application that will run on each trader desktop
will configure the analytics engine on a per trader basis, controlling the specifics of the analytics
for each bond the trader is pricing. Once the analytics are applied to the market data, the
modified data is sent out to various trading venues where traders from other firms can buy or
sell the bonds.

Architecture with Patterns

With this overview of the workflow of the system, we can approach some of the architectural
problems we encounter during the design process. Let’s take a look at what we know to date.
Traders need a very responsive application on both Windows NT and Solaris workstations.
Therefore, we decided to implement the client application as a Java thick client because of its
platform independence and its ability to quickly respond to user input and market data. On the
server side, we are inheriting legacy C++ components that our system will utilize. The market
data components communicate with the TIBCO Information Bus (TIB) messaging infrastructure.

We are inheriting the following components:

• Market Data Price Feed Server: Publishes incoming market data to the TIB.
• Analytics Engine: Performs analytics on incoming market data and broadcasts the

modified market data to the TIB.
• Contribution Server: Performs all communication with trading venues. The trading

venues are third party components not controlled by the bank.

Legacy Market Data Subsystem

Legacy Contribution Subsystem

We need to decide how the separate subsystems (Java thick client, market data, and contribution)
are going to communicate. We could have the thick client communicate directly with the legacy
servers, but that would require too much business logic on the client. Instead, we’ll build a pair of
Java gateways to communicate with the legacy servers—The Pricing Gateway for market data a

Contribution Gateway for sending prices to trading venues. This will achieve nice encapsulation
of the business logic related to these areas. The current components in the system are shown
below. The connections marked as “???” indicate that we are still unsure how some of the
components will communicate.

The system and its components

The first communication question is how to integrate the Java thick client and the two Java server
components in order to exchange data. Let’s look at the four integration styles suggested in this
book: File Transfer, Shared Database, Remote Procedure Invocation, and Messaging. We can rule out
Shared Database immediately because we wanted to create a layer of abstraction between the
client and the database and don’t want to have database access code in the client. File Transfer can
similarly be ruled out since minimal latency is required to ensure current prices are sent out to
the trading venues. This leaves us with a choice between Remote Procedure Invocation or
Messaging.

The Java platform provides built-in support for both Remote Procedure Invocation and Messaging.
RPC-style integration can be achieved using Remote Method Invocation (RMI), CORBA, or
Enterprise Java Beans (EJB). The Java Messaging Service (JMS) is the common API for
messaging-style integration. So both integration styles are easy to implement in Java.

So which will work better for this project, Remote Procedure Invocation or Messaging? There’s only
one instance of the Pricing Gateway and one instance of the Contribution Gateway in the system,
but usually many Thick Clients simultaneously connect to these services (one for each bond
trader that happens to be logged in at a particular time). Furthermore, the bank would like this to
be a generic pricing system that can be utilized in other applications. So besides an unknown
number of Think Clients, there may be an unknown number of other applications using the
pricing data coming out of the Gateways.

A Thick Client (or other application using the pricing data) can fairly easily use RPC to make
calls to the Gateways to get pricing data and invoke processing. However, pricing data will
constantly be published, and certain clients are only interested in certain data, so getting the
relevant data to the proper clients in a timely manner could be difficult. The clients could poll the
Gateways, but that will create a lot of overhead. It would be better for the Gateways to make the
data available to the clients as soon as it is available. This, however, will require each Gateway to
keep track of which clients are currently active, and which want what particular data; then, when
a new piece of data becomes available (which will happen numerous times per second), the
Gateway will have to make an RPC to each interested client to pass the data to the client. Ideally,
all clients should be notified simultaneously, so each RPC needs to be made in its own concurrent
thread. This can work, but is getting very complicated very fast.

Messaging greatly simplifies this problem. With Messaging, we can define separate channels for
the different types of pricing data. Then, when a Gateway gets a new piece of data, it will add a
message containing that data to the Publish-Subscribe Channel for that data type. Meanwhile, all
clients interested in a certain type of data will listen on the channel for that type. In this way, the
Gateways can easily send out new data to whomever is interested, without needing to know how
many listener applications there are or what they are.

The clients still need to be able to invoke behavior in the Gateways as well. Since there are ever
only two Gateways, and the client can probably block while the method is invoked
synchronously, these client-to-Gateway invocations can fairly easily be implemented using RPC.
However, since we are already using messaging for Gateway-to-client communication, messages
are probably just as good a way to implement client-to-Gateway communication as well.

Therefore, all communication between the Gateways and the clients will be accomplished
through messaging. Because all of the components are written in Java, JMS presents an easy
choice for as the messaging system. This is effectively creating a Message Bus or an architecture
that will make it possible for future systems to integrate with the current system with little or no
changes to the messaging infrastructure. This way, the business functionality of the application
can be easily used by other application the bank develops.

Java Components Communicating with JMS

JMS is simply a specification and we need to decide on a JMS-compliant messaging system. We
decided to use IBM MQSeries JMS because the bank is an “IBM shop,” using WebSphere
application servers and many other IBM products. As a result, we will use MQSeries since we
already have a support infrastructure in place and a site license of the product.

The next question is how to connect the MQSeries messaging system with the standalone C++
Contribution server and the TIBCO based Market Data and Analytics Engine servers. We need a
way for the MQSeries consumers to have access to the TIB messages. But how? Perhaps we could
use the Message Translator pattern to translate TIB messages into MQSeries messages. Although
the C++ client for MQSeries serves as a Message Translator, using it would sacrifice JMS server
independence. And although TIBCO does have a Java API, the customer architect and manager
have rejected it. As a result, the Message Translator approach has to be abandoned.

The bridge from the TIB server to the MQSeries server requires communication between C++ and
Java. We could use CORBA, but then what about the messaging? A closer look at the Message
Translator pattern shows it is related to the Channel Adapter in its use of communication protocols.
The heart of a Channel Adapter is to connect non-messaging systems to messaging systems. A pair
of channel adapters that connects two messaging systems is a Messaging Bridge.

The purpose of a Messaging Bridge is to transfer messages from one messaging system to another.
This is exactly what we are doing with the added complexity of the intra-language Java to C++
communication. We can implement the cross language Messaging Bridge using a combination of
Channel Adapters and CORBA. We will build two lightweight Channel Adapter servers, one in C++
managing communication with the TIB, and one in Java managing communication with JMS.
These two Channel Adapter, which are Message Endpoints themselves, will communicate with each
other via CORBA. Like our choice for MQSeries, we will use CORBA rather than JNI since it is a
company standard. The messaging bridge implements the effectively simulated message
translation between seemingly incompatible messaging systems and different languages.

Message Translator using Channel Adapters

The next diagram shows the current system design including the Gateways and other
components. This is a good example of pattern application. We combined two Channel Adapters
with a non-messaging protocol to implement the Message Translator pattern, effectively using one
pattern to implement another pattern. Additionally, we changed the Channel Adapters' context to
link two messaging systems with a non-messaging cross language translation protocol rather
than connecting a messaging system to a non-messaging system.

The current system with the Channel Adapters

Structuring Channels

A key to working with patterns is not only knowing when to use which pattern, but also how to
most effectively use it. Each pattern implementation has to take into account specifics of the
technology platform as well as other design criteria. This section applies the same discovery
process to find the most efficient use of the Publish-Subscribe Channel in the context of the market
data server communicating with the analytics engine.

Real time market data originates with market data feed, a C++ server that broadcasts market data
on the TIB. The market data feed uses a separate Publish-Subscribe Channel for each bond it is
publishing prices for. This may seem a little extreme since each new bond needs its own new
channel. But this is not so severe since you do not actually need to create channels in TIBCO.

Rather, channels are referenced by a hierarchical set of topic names called subjects. The TIBCO
server then filters a single message flow by subject, sending each unique subject to a single
virtual channel. The result of which is a very lightweight message channel.

We could create a system that publishes on a few channels and subscribers could listen only for
prices they are interested in. This would require subscribers to use a Message Filter or Selective
Consumer to filter the entire data flow for interesting bond prices, deciding whether each message
should be processed as it is received. Given that the market data is published on bond-dedicated
channels, subscribers can register for updates on a series of bonds. This effectively allows
subscribers to "filter" by selectively subscribing to channels and only receiving updates of interest
rather than deciding after the message is received. It is important to note that using multiple
channels to avoid filtering is a nonstandard use of messaging channels. In context of the TIBCO
technology however, we are really deciding whether to implement or own filters or utilize the
channel filtering built into TIBCO -- rather than whether to use so many channels.

The next component we need to design is the analytics engine, another C++/TIB server that will
modify the market data and rebroadcast it to the TIB. Although it is out of the scope of our
Java/JMS development, we are working closely with the C++ team to design it since we are the
analytics engine's primary 'customer'. The problem at hand is to find the channel structure that
most efficiently rebroadcast the newly modified market data.

Since we already have one dedicated Message Channel per bond inherited from the market data
price feed, it would be logical to modify the market data and rebroadcast the modified market
data on the bond dedicated Message Channel. But this will not work since the analytics modifying
the bonds prices are trader specific. If we rebroadcast the modified data on the bond Message
Channel, we will destroy the data integrity by replacing generic market data with trader specific
data. On the other hand, we could have a different message type for trader specific market data
that we publish on the same channel allowing subscribers to decide which message they are
interested in to avoid destroying the data integrity. But then clients will have to implement their
own filters to separate out messages for other traders. Additionally, there will a substantial
increase in messages received by subscribers, placing an unnecessary burden on them.

There are two options:

1. One Channel per Trader: Each trader has a designated channel for the modified market
data. This way, the original market data remains intact and each trader application can
listen to its specific traders Message Channel for the modified price updates.

2. One Channel per trader per Bond: Create one Message Channel per-trader per-bond
solely for the modified market data of that bond. For example, the market data for bond
ABC would be published on channel "Bond ABC" while the modified market data for
trader A would be published on Message Channel "Trader A, Bond ABC", modified
market data for trader B on "Trader B, Bond ABC," and so on.

One channel per trader

One channel per bond per trader

There are advantages and disadvantages to each approach. The per-bond approach, for example,
uses a lot more Message Channel. In the worst-case scenario, the number of Message Channel will
be the number of bonds total multiplied by the number of traders. We can put upper bounds on
the number of channels that will be created since we know that there are only around 20 traders
and they never price more than a couple hundred bonds. This puts the upper limit below the
10,000 range, which is not so outlandish compared to the nearly 100,000 Message Channel the
market data price feed is using. Also, since we are using the TIB and Message Channel are quite
inexpensive, the number of Message Channels is not a severe issue. On the other hand, the sheer
number of Message Channels could be a problem from a management perspective. Every time a
bond is added a channel for each trader must be maintained. This could be severe in a very
dynamic system. Our system, however, is essentially static. It also has an infrastructure for
automatically managing Message Channels. This combined with the inherited architecture of a

legacy component using a similar approach minimizes the downside. This is not to say we
should make an unnecessarily excessive number of Message Channels. Rather, we can implement
an architectural approach that uses a large number of Message Channels when there is a reason.

And there is a reason in this case that comes down to the location of logic. If we implement the
per trader approach, the Analytics Engine needs logic to group input and output channels. This is
because the input channels from the Analytics Engine are per bond and the output Message
Channels would be per trader, requiring the Analytics Engine to route all analytics input from
multiple bonds for a particular trader to a trader specific output Message Channel. This effectively
turns the analytics engine into a Content-Based Router to implement custom routing logic for our
application.

Following the Message Bus structure, the Analytics Engine is a generic server that could be used
by several other systems in the. So we don’t want to cloud it with system specific functionality.
On the other hand, the per-bond approach works since the idea of a trader owning the analytics
output of bond prices is a company accepted practice. The per-bond approach keeps the Message
Channel separation of the market data feed intact, while adding several more Message Channels.
Before we reach the client, we want a Content-Based Router to combine these several channels into
a manageable number of channels. We don’t want the client application running on the trader’s
desktop to be listening to thousands or tens of thousands of Message Channels. Now the question
becomes where to put the Content-Based Router. We could simply have the C++/TIB Channel
Adapter forward all of the messages to the Pricing Gateway on a single Message Channel. This is
bad for two reasons; we would be splitting up the business logic between C++ and Java, and we
would lose the benefit of the separate Message Channels on the TIB side allowing us to avoid
filtering later in the data flow. Looking at our Java components, we could either place it in the
Pricing Gateway or create an intermediary component between the Pricing Gateway and the
client.

In theory, if we persisted the bond-based separation of Message Channels all the way to the client,
the Pricing Gateway would rebroadcast pricing information with the same channel structure as
the Pricing Gateway and Analytics Engine. This means a duplication of all of the bond dedicated
TIB channels in JMS. Even if we create an intermediary component between the Pricing Gateway
and the client, the Pricing Gateway will still have to duplicate all of the channels in JMS. On the
other hand, implementing logic directly in the Pricing Gateway allows us to avoid duplicating
the large number of channels in JMS—allowing us to create a much smaller number of channels
in the order of one per trader. The Pricing Gateway registers itself through the C++/TIB Channel
Adapter as a consumer for each bond of every trader in the system. Then the Pricing Gateway will
forward each specific client only the messages related to that particular trader. This way, we only
use a small number of Message Channels on the JMS end, while maximizing the benefit of the
separation on the TIB end.

The complete Market Data Flow to the client

The Message Channel layout discussion is a good example of how integrating patterns is
important. The goal here was to figure out how to effectively use the Message Channels. Saying
you use a pattern isn’t enough. You need to figure out how to best implement it and incorporate
into your system to solve the problems at hand. Additionally, this example shows business forces
in action. If we could implement business logic in any of our components, we could have gone
with the per trader approach and implemented an overall more simple approach with many less
channels.

Selecting a Message Channel?

Now that we know the mechanics of the communication between the Java/JMS components and
the C++/ TIBCO components, and we have seen some Message Channel structuring, we need to
decide which type of JMS Message Channels the Java components should use to communicate.
Before we can choose between the different Message Channels available in JMS, let’s look at the
high level message flow of the system. We have two gateways (Pricing and Contribution)
communicating with the client. Market data flows to the client from the Pricing Gateway which
sends it out to the Contribution Gateway. The client application sends message to the Pricing
Gateway to alter the analytics being applied to each bond. The Contribution Gateway also sends
messages to the Client application relaying the status of the price updates to the different trading
venues.

The system message flow

The JMS specification describes two Message Channel types, Point-to-Point Channel (JMS Queue) and
Publish-Subscribe Channel (JMS Topic). Recall that the case for using publish-subscribe is to enable
all interested consumers to receive a message while the case for using point-to-point is to ensure
that only one eligible consumer receives a particular message.

Many systems would simply broadcast messages to all client applications, leaving each
individual client application to decide for itself whether or not to process a particular message.
This will not work for our application since there are a large number of market data messages
being sent to each client application. If we broadcast market data updates to uninterested trader,
we will be unnecessarily wasting client processor cycles deciding whether or not to process a
market data update.

Point-to-Point Channels initially sound like a good choice since the clients are sending messages to
unique servers and visa versa. But it was a business requirement that traders may be logged in to
multiple machines at the same time. If we have a trader logged in at two workstations
simultaneously and a point-to-point price update is sent, only one of the two client applications
will get the message. This is because only one consumer on a Point-to-Point Channel can receive a
particular message. Notice that only the first of each group of a trader's client applications
receives the message.

Point-to-Point Messaging for Price Updates

We could solve this using the Recipient List pattern, which publishes messages to a list of
intended recipients, guaranteeing that only clients in the recipient list will receive messages.
Using this pattern, the system could create recipient lists with all client application instances
related to each trader. Sending a message related to a particular trader would in turn send the
message to each application in the recipient list. This guarantees all client application instances
related to a particular trader would receive the message. The downside of this approach is that it
requires quite a bit of implementation logic to manage the recipients and dispatch messages.

Recipient List for Price Updates

Even though point-to-point could be made to work, let’s see if there is a better way. Using
Publish-Subscribe Channels, the system could broadcast messages on trader specific channels
rather than client application specific channels. This way, all client applications processing
messages for a single trader would receive and process the message.

Publish-Subscribe Messaging for Price Updates

The downside of using Publish-Subscribe Channels is that unique message processing is not
guaranteed with the server components. It would be possible for multiple instances of a server
component to be instantiated and each instance process the same message, possibly sending out
invalid prices.

Recalling the system message flow, only a single communication direction is satisfactory with
each Message Channel. Server-to-client communication with publish-subscribe is satisfactory while
client-to-server communication is not and client-server communication with point-to-point is
satisfactory while server-client is not. Since there is no need to use the same Message Channel in
both directions, we can use each Message Channel only one direction. Client-to-server
communication will be implemented with point-to-point while server-to-client communication
will be implemented with publish-subscribe. Using this combination of Message Channels, the
system benefits from direct communication with the server components using point-to-point
messaging and the multicast nature of publish-subscribe without either of the drawbacks.

Message flow with Channel Types

Problem Solving With Patterns

Patterns are tools and collections of patterns are toolboxes. They help solve problems. Some think
that patterns are only useful during design. Following the toolbox analogy, this is like saying that
tools are only useful when you build a house, not when you fix it. The fact is that patterns are a
useful tool throughout a project when applied well. In the following sections we will use the
same pattern exploration process we used in the previous section to solve problems in our now
working system.

Flashing Market Data Updates

Traders want table cells to flash when new market data is received for a bond, clearly indicating
changes. The Java client receives messages with new data which triggers a client data cache
update and eventually flashing in the table. The problem is that updates come quite frequently.
The GUI thread stack is becoming overloaded and eventually freezing the client since it can’t
respond to user interaction. We will assume that the flashing is optimized and concentrate on the
data flow of messages through the updating process. An examination of performance data shows
the client application is receiving several updates a second; some updates occurred less than a

millisecond apart. Two patterns that seem like they could help slow down the message flow are
Aggregator and Message Filter.

A first thought is to implement a Message Filter to control the speed of the message flow by
throwing out updates received a small amount of time after the reference message. As an
example, lets say that we are going to ignore messages within 5 milliseconds of each other. The
Message Filter could cache the time of the last acceptable message and throw out anything
received within the next 5 milliseconds. While other applications may not be able to withstand
data loss to such an extent, this is perfectly acceptable in our system due to the frequency of price
updates.

Time based Message Filter

The problem with this approach is that not all data fields are updated at the same time. Each
bond has approximately 50 data fields displayed to the user including price. We realize that not
every field is updated in every message. If the system ignores consecutive messages, it may very
well be throwing out important data.

The other pattern of interest is the Aggregator. The Aggregator is used to manage the reconciliation
of multiple, related messages into a single message, potentially reducing the message flow. The
Aggregator could keep a copy of the bond data from the first aggregated message, then update
only new or changed fields successive messages. Eventually the aggregated bond data will be
passed in a message to the client. For now, lets assume that the Aggregator will send a message
every 5 milliseconds like the Message Filter. Later, we'll explore another alternative.

Aggregator with partial successive updates

The Aggregator, like any other pattern, is not a silver bullet; it has its pluses and minuses that
need to be explored. One potential minus is that implementing an Aggregator would reduce the
message traffic by a great amount in our case only if many messages are coming in within a

relatively short time regarding the same bond. On the other hand, we would accomplish nothing
if the Java client only receives updates for one field across all of the traders bonds. For example, if
we receive 1000 messages in a specified timeframe with 4 bonds of interest, we would reduce the
message flow from 1000 to 4 messages over that timeframe. Alternatively, if we receive 1000
messages in the same timeframe with 750 bonds of interest, we will have reduced the message
flow from 1000 to 750 messages; relatively little gain for the amount of effort. A quick analysis of
the message updates proves that the Java client receives many messages updating fields of the
same bond, and therefore related messages. So, Aggregator is in fact a good decision.

What's left is to determine how the Aggregator will know when to send a message it has been
aggregating. The pattern describes a few algorithms for the Aggregator to know when to send the
message. These include algorithms to cause the aggregator to send out its contents after a certain
amount of time has elapsed, after all required fields in a data set have been completed, and others.
The problem with all of these approaches is that the aggregator is controlling the message flow,
not the client. And the client is the major bottleneck in this case, not the message flow.

This is because the Aggregator is assuming the consumers of its purged messages (the client
application in this case) are Event-Driven Consumers, or consumers that rely on events from an
external source. We need to turn the client into a Polling Consumer, or a consumer that
continuously checks for messages, so the client application can control the message flow. We can
do this by creating a background thread that continuously cycles through the set of bonds and
updates and flashes any changes that have occurred since the last iteration. This way, the client
controls when messages are received and as a result, guarantees that it will never become
overloaded with messages during high update periods. We can easily implement this by sending
a Command Message to the Aggregator initiating an update. The Aggregator will respond with a
Document Message containing the set of updated fields that the client will process.

The choice of Aggregator over Message Filter is clearly a decision based solely on the business
requirements of our system. Each could help us solve our performance problems, but using the
Message Filter would solve the problem at cost of the system data integrity.

Major Production Crash

With the performance of the flashing fixed, we are now in production. One day the entire system
goes down. MQSeries crashes, bringing several components down with it. We struggle with the
problem for a while and finally trace it back to the MQSeries dead letter queue (an
implementation of the Dead Letter Channel). The queue grows so large that it brings down the
entire server. After exploring the messages in the dead letter queue we find they are all expired
market data messages. This is caused by “slow consumers,” or consumers that do not process
messages fast enough. While messages are waiting to be processed, they time out (see the Message
Expiration pattern) and are sent to the Dead Letter Channel. The excessive number of expired
market data messages in the dead letter queue is a clear indication that the message flow is too
great – messages expire before the target application can consume them. We need to fix the
message flow and we turn to patterns for help slowing down the message flow.

The bottleneck

A reasonable first step is to explore solving this problem with the Aggregator as we recently used
this pattern to solve the similar flashing market data control rate problem. The system design
relies on the client application to immediately forward market data update messages to the
trading venues. This means the system cannot wait to collect messages and aggregate them. So
the Aggregator must be abandoned.

There are two other patterns that deal with the problem of consuming messages concurrently:
Competing Consumers and Message Dispatcher. Starting with Competing Consumers, the benefit of
this pattern is the parallel processing of incoming messages. This is accomplished using several
consumers on the same channel. Only one consumer processes each incoming message leaving
the others to process successive messages. Competing Consumers, however, will not work for us
since we are using Publish-Subscribe Channels in server-to-client communication. Competing
Consumers on a Publish-Subscribe Channel channel means that all consumers process the same
incoming message. This results in more work without any gain and completely misses the goal of
the pattern. This approach also has to be abandoned.

On the other hand, the Message Dispatcher describes an approach whereby you add several
consumers to a ‘pool’. Each consumer can run its own execution thread. One main Message
Consumer listens to the Channel and delegates the message on to an unoccupied Message
Consumer in the pool and immediately returns to listening on the Message Channel. This achieves
the parallel processing benefit of Competing Consumers, but works on Publish-Subscribe Channels.

The Message Dispatcher in context

Implementing this in our system is simple. We create a single JMSListener called the Dispatcher,
which contains a collection of other JMSListeners called Performers. When the onMessage method
of the Dispatcher is called, it in turn picks a Performer out of the collection to actually process the
message. The result of which is a Message Listener (the Dispatcher) that always returns
immediately. This guarantees a steady flow of message processing regardless of the message flow
rate. Additionally, this works equally well on a Publish-Subscribe Channels as it does on a
Point-to-Point Channels. With this infrastructure, messages can be received by the client
application at almost any rate. If the client application is still slow to process the message after
receiving them, the client application can deal with the delayed processing and potentially
outdated market data rather than the messages expiring in the JMS Message Channel.

The crash discussed in this section and the fix using the Message Dispatcher is an excellent
example of the limits of applying patterns. We encountered a performance problem based on a
design flaw not allowing the client to process messages in parallel. This greatly improved the
problem, but did not completely fix it. This is because the real problem was the client becoming a
bottleneck. This couldn’t be fixed with a thousand patterns. We later addressed this problem by
refactoring the message flow architecture to route messages directly from the Pricing Gateway to
the Contribution Gateway. So patterns can help design and maintain a system, but don’t
necessarily make up for poor upfront design.

Summary

Throughout this chapter, we have applied patterns to several different aspects of a bond trading
system including solving initial upfront design problems and fixing a nearly job threatening

production crash with patterns. We also saw these patterns as they already exist in third party
product, legacy components, and our JMS and TIBCO messaging systems. Most importantly,
these are real problems with the same types of architectural, technical and business problems we
experience as we design and maintain our own systems. Hopefully reading about applying
patterns to this system helps give you a better understanding of the patterns as well as how to
apply them to your own systems.

14．Concluding Remarks

Emerging Standards and Futures in Enterprise

Integration

By Sean Neville

As data flows across system and domain boundaries through messaging conduits, and as
developers and architects become more proficient in the patterns that govern messaging systems,
new standards and products will emerge to extend the tactical reach of those patterns. Over time,
patterns tend to strengthen but otherwise change little if at all; but their implementation
strategies often evolve rapidly to allow developers to apply them to much broader scales of
sophistication. The fundamental Message Pattern, for example, finds its reach and applicability
extended as implementation artifacts grow from EDI to proprietary MOM to open XML and
SOAP-based web services to global BPEL and beyond.

This chapter takes a look at the future of message-based enterprise integration in terms of the
emerging standards that application developers will encounter in the mid 00's. Many of these
standards are not currently in common use, but are coalescing with broad industry support, and
are likely to serve as the foundation of integration pattern implementations particularly in
service-oriented architectures. Most of them extend nascent web services technologies to support
the types of patterns presented in this book. We'll take a look at why these standards are
important in relation to design patterns, which organizations are creating them and how they're
going about it, and offer a brief summary of the technical solutions for business process
integration that a few of the most promising web services and Java standards aim to provide.

The Relationship between Standards and Design Patterns

Two mental artifacts provide the highest levels of abstraction in software architecture today:
Programming orientations, which include object-oriented programming, service-oriented
programming, generative programming and the like; and pattern languages, such as that
documented in this book. If a particular orientation or design pattern proves useful, and if its
context proves to recur frequently, the tactics and strategies used to implement the pattern often
become very similar. Pattern solutions on multiple platforms, products and applications end up
owning very few differences -- but those few differences are often frustrating growth inhibitors,
typically semantic in nature, and produce interoperability that hinders sophistication of scale. To
extend the reach of applications and the patterns on which they're based, such differences tend to
be eliminated from products and platforms through formally agreed-upon standards.

When a pattern's tactic or implementation strategy is standardized, the pattern does not wane in
usefulness, replaced by that standard; instead, quite the opposite occurs. Like rings within a tree
trunk, a strong pattern grows upon itself to ever-broader levels of applicability, creating and then
applying itself in broader instances of context. This growth in scale occurs because separate
instances of a pattern's implementation become interoperable with one another. Taking a typical
message-oriented J2EE application as an example: A pattern such as Pipes and Filters exists at
many levels -- within the application as designed by the developer, but also within the server
product used to host the application, within the containers and services within that server, within
the filters and components that compose the messaging subsystems, and so forth in recursive
fashion.

Emerging messaging and web service standards will serve to strengthen the patterns in this book
by extending the reach of the developers who employ them. Standards such as Business Process
Execution Language (BPEL) and Web Services Reliability (WS-Reliability) propagate the scope of
these patterns beyond bits, beyond languages, beyond products, and outward into increasingly
useful compositions in the human- and system-centric circles of use cases and requirements.
Application developers can stop using patterns such as Correlation Identifier to match raw
message replies to their senders, and can start using that same pattern to correlate process
components that consist of multiple asynchronous message senders and receivers. Without the
benefit of messaging standards, a Java developer may implement Message Router at the code level
to inspect the contents of individual XML messages in order to programmatically forward the
message to a particular service or filter. Emerging workflow and choreography standards will
allow that same developer to apply his knowledge of the Message Router pattern at a higher level
of abstraction to route workflow among process compositions, where the tactical artifacts are
business process components rather than raw sections of XML documents. In other words,
application developers can stop spending precious time linking protocols and set about the
business of linking business processes and services across domain boundaries.

The usefulness of design patterns and programming orientation for developing sophisticated
systems is proportional to the application developer's ability to depend upon common,
interoperable implementation strategies and tactics. Today, strategies for working with a
messaging pattern in J2EE may mean use of JMS, JCA, or JAX-RPC; tomorrow, the strategies used
by application developers may involve use of model-driven technology, schema-based scripts,
aspects or intentions -- and any such shifts in implementation tactics only increase the
significance of the patterns, if both the pattern's contextual definition and relevant standards are
appropriately embraced. Standards provide the best way we currently know to enforce these
commonalities to extend the software architect's mastery of design patterns.

Survey of Standards Processes and Organizations

Contrary to popular cynicism, standards are not intended to be developed in a vendor vacuum
isolated from practical application development. They are intended to unify and improve the
implementation approaches discovered and developed by application developers. By exercising
the design patterns in this book, you may be contributing to the development of a standard even

if you don't directly contribute to a specification working group. The organizations and
consortiums that oversee specification working groups don't always do a great job of recognizing
and assimilating implementation approaches, but that's the intention.

Standards are officially born when an inventor or group of inventors makes a formal proposal to
a standards body. Usually this requires membership in the standards body. Each standards body
enforces its own process for shaping proposals into a standard, and all members are legally
bound to those rules. The processes generally involve the forming of a working group or
committee to further develop the specification under the oversight and eventual approval of the
organization's management. Intellectual property rights and licensing policies are often hot topics
in these organizations, and can vary between standard bodies and even between working groups
within the standards bodies.

Here's a look at the major standards organizations involved in creating the emerging messaging
and web service standards:

W3C (http://www.w3c.org): The World Wide Web Consortium develops many of the basic web
technologies that are in turn used as building blocks by other standards organizations. It is
managed by an international team of researchers and engineers, and consists of a large group of
member vendors, content providers, governments, research laboratories, and other entities. The
W3C makes use of an open, collaborative review process in Working Groups and subsequently in
public that results in lengthy but generally high-quality iterations. Technologies created through
the W3C are usually unencumbered by member claims to intellectual property rights. W3C
technologies include SOAP and WSDL, as well as all of the core XML specifications. The W3C
Choreography Working Group will likely resolve conflicting business process specifications and
provide the definitive basis for integration using web services.

OASIS (http://www.oasis-open.org): One of several organizations that builds on W3C
technologies is the Organization for the Advancement of Structured Information Standards, or
OASIS. Chartered to foster guidelines for SGML development, this non-profit consortium of
vendors now focuses on driving the adoption of global e-business standards. OASIS technical
committees are producing many emerging web service standards, such as ebXML and
WS-Reliability. OASIS also hosts the xml.org portal.

WS-I (http://www.ws-i.org): The Web Services Interoperability Organization (WS-I) aims to
ensure that web service technologies and standards are suitable for enabling business
collaborations in a generic, interoperable manner. The organization promotes web service
protocols and practices that can apply across multiple systems, platforms, and languages. A key
tactic in achieving these goals is the WS-I Basic Profile, which specifies the collection of web
service standards along with their version numbers -- in the first profile these are XML Schema
1.0, SOAP 1.1, WSDL 1.1, and UDDI 1.0 -- as well as conventions governing how they should be
used together. Thus the WS-I intends to play a unifying role in ensuring that various vendors
involved in web services development can work together in a way that benefits application
developers. It was founded and is managed by the leading web service vendor companies,
including Microsoft, IBM, BEA Systems, Oracle, and others.

JCP (http://www.jcp.org): The Java Community Process (JCP) produces Java language bindings
and J2EE APIs for technologies such as the web services and messaging standards developed by
other organizations. Led by Sun Microsystems, the JCP has not historically been an open process;
although it makes use of Expert Groups and a proposal process similar to that of other standards
organizations, intellectual property rights are typically retained by Sun and licensed to the Java
and J2EE platform vendors for a fee. Most of the JSR Expert Groups are also led by Sun engineers.
While lacking the openness of other organizations, the JCP has, on the other hand, benefited from
the focus that Sun has provided somewhat unhindered by external agendas.

Ad Hoc Vendor Consortiums: In the race to establish control over portions of the emerging web
services technologies, particularly for the purposes of enterprise integration, traditional
competitors such as IBM and Microsoft have in some cases united to publish would-be standards
without submitting those works to any standards body. Many of the WS-* specifications fall into
this bucket. Often standards developed through vendor consortiums end up as submissions to
standards organizations; the promising Business Process Execution Language (BPEL), for
example, spent its early life as a creation of Microsoft and IBM before being submitted to OASIS.
Interest in retaining intellectual property rights seems to be the catalyst for working in ad hoc
fashion. These specifications achieve interoperability without the licensing openness, which is
often satisfactory for application developers integrating platforms as popular as those produced
by Microsoft and IBM, though whether these works are truly "open standards" is understandably
the subject of much debate.

Business Process Components and Intra-Web Service

Messaging

Not content merely to influence object-oriented programming, structural decomposition, and
domain modeling, Aristotle also mischievously posed one of the most influential rhetorical
questions ever to trouble software architecture: Is the world predominantly a series of processes
or is it a series of objects?

Messaging standards reply with an answer worthy of a Zen disciple: "yes." The world is a series
of objects whose most important characteristics are usually the processes through which they
engage with and relate to other objects. It is often an object's behaviors related to other objects
rather than its own internal composition that turns out to be most significant. In the realm of web
services and enterprise integration, this object/process hybrid view is referred to as the business
process component. The business process component unites a series of services into a logical unit
that interacts with other such units via messaging to achieve highly-scalable, resilient flows of
logic and data. The coalescence of process, object, and interaction patterns into a business process
component is the future of messaging as seen by many web services vendors and standards
bodies.

The process component is a macro view of a set of services that is particularly relevant to
enterprise integration. Taking a non-technical example: A man can drive a car, and both the man

and the car are separate highly-complex systems; the process view of the man and car, however,
sees them as a single component defined by their interactions with one another, and does not
focus on the composition of either the man or the car separate from the interaction between them.
Further, the process component view goes on to describe the interactions of that single
component with others on the road, again without interest in the internal composition of other
automobiles or drivers. This is not the same as simply presenting an external interface, as it also
includes the rules that govern behaviors between usages of the interfaces.

The business process component as emerging in standards is a single component that internally
consists of a set of web services and a definition for how messages flow into and out of them.
Web services and other message destinations are building blocks used to compose larger
compositions whose interactions follow messaging patterns -- both the composition of the
process component, and the linking of multiple process components into an application follow
messaging patterns. Business process standards address the correlation of messages between web
services in order to create flows of execution, and include behaviors related to errors, transactions,
and data exchange.

A more technical business example is illustrated below, in which the processing of a purchase
order is handled by a component that consists of a number of service operations.

Figure 1: The Business Process Component exposing a single destination endpoint on behalf of multiple

internally choreographed web services.

The example includes the following characteristics and activities:

• Each operation in the Process Purchase Order component is an operation available on the
portType of a web service, and the various web services which expose the operations may
reside on remote hosts in partner production facilities.

• When a purchase order is received, four operations are invoked concurrently; but some of
the operations have dependencies that must be synchronously resolved (the dashed
arrows in the illustration indicate dependencies).

• Two specific dependencies show that the shipping agreement and insurance costs are
needed in order to calculate the final cost, and that a binding insurance agreement must
be received before the manufacturer will commit resources to a production schedule.

• Once all service operations have asynchronously completed, the purchase order has been
processed. Rather than requiring the messaging client to interact with all of these services
individually and manage the dependencies between them -- that is, rather than requiring
the client to create a Process Manager implementation -- the process component exposes a
single network endpoint on behalf of all the services, and manages all of the messaging
and dependencies between services internally, simplifying the client's tasks.

• The Purchase Order process component is in turn linked to another business process
component, the Process Invoice Component.

Four standards initiatives warrant a good look in the business process component and
integration space: the ebXML initiative, two competing proposals called Business Process
Execution Language and Web Services Choreography Interface, and a collection of individual
specifications joined through the "WS-" prefix that address pieces of the same functionality in
slightly narrower, more specific fashion.

ebXML and the Electronic Business Messaging Service

(ebMS)

Even before the explosive popularity of SOAP and WSDL, many bright thinkers working on
business collaboration and B2B integration projects saw a need to develop an open, secure, and
interoperable infrastructure for exchanging business information using XML messaging. The
several specifications and initiatives developed under the Electronic Business using eXtensible
Markup Language (ebXML) banner address that need, and as technologies such as SOAP have
become popular, ebXML has grown to include and build upon them. The ebXML initiatives are
jointly managed through OASIS and the United Nations UN/CEFACT organization.
UN/CEFACT is the global group that brought the Electronic Data Interchange (EDI) standard
into the world, and ebXML in many ways represents the next logical stage in the evolution of
EDI.

Several specifications comprise ebXML, covering topics such as how enterprises advertise their
business process and search for those of potential partners, how partners agree upon and initiate
communication, the use of registries to facilitate the discovery and initialization of business
conversations, and the behavior of the messaging infrastructure required to facilitate the
conversations. This last element in particular has garnered a great deal of attention, and while it
leverages the other ebXML specifications, it can also be considered separately, which is useful for
the purposes of focusing on messaging patterns.

The Electronic Business Messaging Service (ebMS) is not quite as "emerging" as some of the other
standards mentioned here, as it has already achieved significant success as a means of integrating
business processes, augmenting EDI systems, and extending SOAP to provide reliability and
security for web services. Developed by OASIS over a three-year period beginning in 1999, ebMS
is also proving influential in the development of other business process standards.

The goal of ebMS is to ease the exchange of business messages within an XML framework, but
that framework includes the use of message payloads that are not necessarily XML -- the payload
can take any form, including traditional EDI formats as well as binary formats. Thus ebMS can
encapsulate existing messaging systems and serve as a flexible bridging technology, containing a
set of Message Translator implementations, which is particularly useful in scaling integration to
extranets and to B2B communication between business partners. An important source of use
cases for ebMS is the linkage of proprietary MOM systems across separate enterprises, and
considerable testing between vendors and developers has occurred to verify this interoperability.
Critical to ebMS is that it supports legacy EDI systems, allowing enterprises to leverage
longstanding investments in EDI while compensating for EDI's shortcomings by incorporating
features of the web and XML.

While on the one hand ebMS is a compatible iteration of EDI, on the other hand it is also a
sophisticated improvement of standard SOAP-based services. The XML transmissions used in an
ebMS system consist of SOAP envelopes that include ebMS-specific SOAP Headers to record
unique message identifiers, timestamps, digital signatures, and a manifest which provides
metadata about the message's payload. Thus ebMS uses the SOAP Header mechanism to
implement the Introduction to Message Routing patterns and many of the Introduction to Messaging
Endpoints patterns, such as Idempotent Receiver and others related to guaranteed sequential
delivery.

ebMS transports its payloads by using the SOAP with Attachments standard to attach the
payload to the SOAP envelope in much the same way that attachments are added to email
messages. These payloads, again, have no formatting restrictions placed upon them: a message's
payload may be XML data, binary data, link-based references to external data, etc. Further, each
payload may have its own digital signature, and additional authentication and authorization may
be provided by ebMS implementers.

Figure 2: An ebMS message is composed as SOAP messages with attachments.

Asynchronous message delivery is the default, but synchronous delivery is also possible through
ebMS. The error-handling mechanism is also quite sophisticated, and depending on the
implementation can provide SOAP Fault information along with payload-specific error
messages.

To provide reliability, the critical element of an ebMS implementation -- called ebXML Message
Service Handlers -- persist messages at the sending end of a conversation. Developers can
provide semantic declarations such as "once-and-only-once" and "store-and-forward" for
individual messages or for groups of messages. ebMS specifies services to manage sequential
delivery and management as well; this last service is implemented through a Message Status
Service that represents a Control Bus. It provides the ability to request the status of a message
previously sent into the ebMS system, which underneath the covers operates through an
implementation of Message History and related patterns.

More information on ebXML can be found here: http://www.ebxml.org/

The ebMS specification can be found here: http://www.ebxml.org/specs/ebMS2.pdf

Business Process Execution Language for Web Services

(BEPL4WS)

A popular emerging standard for defining business process components and their interactions is
Business Process Execution Language for Web Services (BPEL4WS). The name is often
pronounced "bee-pel" or even worse -- "bee-pel for wuss." This standard represents the merging
of two competing proposals from IBM and from Microsoft. IBM's Web Services Flow Language
(WSFL) specified a means of creating and linking service endpoints to choreograph web service
workflows, while Microsoft's XLANG provided a syntax and development model for creating
workflow components as realized in the Microsoft BizTalk server product. BPEL4WS provides a
bit of both: It includes a syntax for composing processes from existing services, and for describing
process interfaces for the purpose of linking them together in larger workflows. It was created by
an ad hoc collaboration between BEA Systems, IBM, and Microsoft, and has been submitted to
OASIS.

The design of BPEL calls for linkages of web services, named "partners," to put XML messages
into and out of message stores, called "containers," according to rules called "activities." A logical
set of service linkages, message containers, and activities comprise a single business process
component. The BPEL specification essentially defines a Process Manager that creates Routing Slip,
Durable Subscriber, Datatype Channel, and more based on a declarative XML syntax. Developers
declare behaviors in XML (perhaps with the aid of visual tools) in order to craft business process
components such as the one in Figure 1 above, and do not need to programmatically create the
messaging between services.

Web Service Description Language (WSDL) documents are very important to BPEL, as the BPEL
component will consist of and manage multiple web services based on the services' WSDL
documents. The business process instantiates and routes messages to the service endpoints
declared within these services' WSDL documents using messages that are formatted according to
the WSDL message declarations. The BPEL syntax links the portType and operations of a set of
web services by importing their WSDL files and declaring what sequences to use to receive the
service messages, where to send them, when and how to reply, when to invoke other web
services, and so forth.

In order to establish the linkages between services, the application developer imports the WSDL
of the web services comprising the component and defines the partner relationships between
them using the BPEL serviceLinkType element. This element refers to the portTypes of the web
services involved in a flow and the partner roles that they play in relation to the process; the
developer is then able to refer to these linkages and partner roles when declaring how messages
should flow into and out of them.

After declaring the relationships between services, the developer uses BPEL to create "containers"
to hold the messages that the services use as input and output. Containers are very much like a
Datatype Channel for the message types defined in WSDL. Depending on the underlying container

implementation, a container could also be considered from the perspective of the Shared Database
integration style, but with added encapsulation and built-in collaboration semantics; a container
is a shared data repository used by separate services. In addition to connecting containers to
services through the BPEL elements, a container's contents can be accessed directly via XPath
extensions.

A BPEL component itself exposes its own input and output points as a single interface, and it
does so in the same form that its internal web services use: through WSDL. It should be evident,
however, that the WSDL of a business process component is slightly different from a web service
WSDL document in that the business process WSDL's portTypes define entry points into and out
of that single process, and not separate pieces of logic implemented as methods in a service
interface.

The behavior of a BPEL component is declared as a set of actions. In any one specific action, a
business processes can send messages to a service (in this case the web service is called an
invoked partner), receive messages from a service (in this case the service is called a client
partner), reply to a message sent by a client partner, determine whether it should send or receive
messages based on some logical rule, wait for a scheduled period of time, report an error, copy a
message from one place to another, or do nothing at all.

The BPEL XML grammar reflects each these basic actions. A developer uses the <invoke>
element to send messages to an invoked partner, and uses <receive> and <reply> to receive and
reply to a client partner. Elements such as <flow> and <pick> fork logic into parallel and
event-based channels of execution. The <throw> element facilitates error reporting, while the
<wait>, <empty> and <terminate> elements pause or halt execution. Elements to structure
activities include <while>, <sequence> and <pick>, and conditionals in BPEL are declared using
XPath statements.

Once a developer has created the XML source file that defines the services that will compose a
business process, declares the message containers that the services will use, and declares the
sequence of operations involved in the message exchange, he is ready to deploy the business
process component. This is where the runtime aspects of BPEL implementations come into play.

In addition to acting as declarations of service relationships and message flow, BPEL descriptions
are also executables file that can be fed into a BPEL4WS engine. When this happens, the engine
interprets the file and sets up a series of messaging constructs for the application developer that
connects the web services that are part of the business process. As a Process Manager
implementation, the BPEL4WS runtime is the governing entity that manages and correlates the
flow of messages between services. The BPEL4WS engine accepts all of the necessary documents
and dynamically generates and manages the messaging infrastructure.

The BPEL specification can be found here:
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

Web Service Choreography Interface (WSCI)

The Web Service Choreography Interface (often pronounced "whiskey") addresses the same
problem domain tackled by BPEL. The two were competing specifications initially backed by
competing vendor alliances (with the exception of BEA, which appears to be hedging bets by
contributing to both specifications). WSCI was backed by Sun, Intalio, SAP, and BEA, and has
been submitted to the W3C. However, several original supporters of WSCI are now lending
support to BPEL.

WSCI is influenced by Business Process Modeling Language (BPML), which while not directly
relevant to integration patterns does bear mentioning for the sake of WSCI's historical context.
BPML represents business processes in an XML-based meta language used in process modeling.
BPML's workflow aspects are largely part of WSCI, but BPML also includes a companion
graphical notation and query language.

Like BPEL, WSCI recognizes the fact that enterprise integration involves lengthy conversations
among composite services rather than the single operational invocations assumed by basic web
services protocols. WSCI provides a way to link service messages from multiple operations into
these composite processes, ensuring along the way that messages are sent or received in the
proper sequences, sent and received according to declarative business rules, sent in transactional
fashion when needed, and portrayable and manageable as a single global process. Leveraging
web service advantages over traditional proprietary MOM solutions, WSCI also accommodates
the dynamic discovery of services, heterogeneous protocols, and decentralized coordination of
workflow.

Like BPEL, WSCI relies heavily upon WSDL's advertisement of service endpoints, portTypes,
operations, and message types. WSCI actions directly map to operations exposed in the WSDL of
the services within a choreography. Moreover, the WSCI syntax is embedded directly within a
WSDL file; the declarations sit either in a WSDL document which imports the WSDL documents
of the choreographed services, or within the WSDL file of a single service whose operations are
being choreographed. WSCI elements are contained within the WSDL <definitions> element.

The fundamental construct of WSCI is the action, in which web service messaging occurs. Actions
are grouped within process elements so that they are declared to occur sequentially, in parallel, in
loop, or conditionally. A set of processes is grouped with an interface declaration; this
<interface> element is the interface to the process component, and it is directly embedded within
the WSDL definitions of a web service. Many of the activity elements are similar to those of BPEL,
and like their BPEL counterparts they include support for XPath expressions.

The WSCI specification can be found here:
http://wwws.sun.com/software/xml/developers/wsci/wsci-spec-10.pdf

Java business process component standards

The Java Community Process (JCP) creates Java language APIs and bindings influenced by
non-Java standards. In particular, standards developed by the Object Management Group (OMG)
and the W3C have been shadowed by the JCP. Recently, the JCP has turned this approach toward
web service standards developed by groups such as the WS-I, and two new much-ballyhooed
JSR's are now underway to address Java bindings for business process components: Process
Definition for Java (JSR-207) submitted by BEA Systems, and Java Business Integration (JSR-208)
submitted by Sun Microsystems. While at first glance these two proposals may seem to overlap,
they are actually fairly complimentary. JSR-207 specifies a way for developers to craft messaging
or process components quickly and easily using metadata attached to Java code; JSR-208 specifies
how those components will interact with each other, with containers, and with the rest of the
J2EE and web services world. So JSR-207 is more or less a micro view and JSR-208 is a macro
view of how the messaging between process components is to be standardized in Java.

Process Definition for Java (JSR-207)

Process Definition for Java (JSR-207), submitted by BEA Systems, aims to define metadata,
interfaces, and a runtime model for creating business processes in the Java/J2EE environment.
This very important JSR intends to specify the standard means of crafting business process
components using the Java language and Javadoc-like metadata annotations. Proposed as an
addition to J2EE, the mechanism could also be used to build Java implementations of business
process initiatives such as BPEL4WS, WSCI, and those produced by the W3C Choreography
Working Group.

This technology builds upon Java Language Metadata technology (JSR-175) in order to supply a
simple syntax for describing business processes. Metadata can be applied directly to Java source
code in order to dynamically generate and bind process behaviors, including support for
asynchronous messaging, parallel execution, message correlation, message routing, error
handling, and other common flow activities. The metadata semantics, therefore, need to be rich
enough to support the parameters needed for a component's container to dynamically set up the
messaging infrastructure and handle issues described in Introduction to Message Construction upon
the component's deployment.

It is worth noting that this JSR is not needed to enable developers to build business process
components in J2EE. It is possible to build such processes today -- but it is laborious work that
requires developers to apply messaging patterns at a very low level, and results in workflows
that are costly to maintain. This specification intends to simplify the creation of process
components so that developers can apply their skills at a higher level, creating more powerful
applications more rapidly that are less expensive to evolve and administer over time.

More details on Process definition for Java can be found here:
http://www.jcp.org/en/jsr/detail?id=207

Java Business Integration (JSR-208)

Sun proposed Java Business Integration (JBI) in JSR-208 with the intention of defining service
provider interfaces (SPIs) for creating a business integration environment for specifications such
as WSCI, BPEL4WS and the work produced by the W3C Choreography Working Group. JBI
proposes no new Java APIs or annotations, but does include a new deployment and packaging
mechanism. Instead of adding APIs for developers, JBI focuses on integration infrastructure, and
its SPIs will be visible primarily to product vendors who create messaging and process
component models for performing integration work in a Java setting. The JBI expert group aims
to follow the lead of the W3C Choreography Working Group and ensure that the work of that
group will fit seamlessly into the J2EE platform.

JBI has a fairly lofty goal: Map various systems and protocol standards -- that is, multiple
syntaxes used to describe relationships between processes, including syntaxes that are
proprietary and vendor-specific as well as those that become standard -- to one another and to
J2EE. It provides a Java binding for message choreography regardless of the underlying message
and process specifics. It also includes a new packaging mechanism that extends J2EE packaging
(such as WAR, JAR, RAR and EAR) to support the deployment of a JBI component into a J2EE
environment.

JBI sees three principal roles required for supporting process components: Bindings, machines,
and the environment. Bindings are about communication formats, and include message formats
and network transports along with their mappings as well as forming an umbrella around
workflow formats such as BPEL; machines are the service and process containers that host and
manage business processes; the environment is the over-arching process management system
that links heterogeneous machines and bindings to one another. JBI focuses on the environment
as the core of the integration system, and specifies how machines and bindings interact with it.
The JBI packaging and deployment mechanism is intended to provide a means of hooking
processes up to the environment in a standard way, but the actual creation of those components
is outside the scope of the specification.

JBI views the Process Definition for Java (JSR-207) described above as a way of composing
process components, and the runtime that will host those components fits into the category of a
JBI machine. That machine should implement the Message Translator, Service Activator, Envelope
Wrapper and other patterns necessary to expose their formats and protocol behaviors through JBI
to ensure that it can integrate correctly with the integration environment.

More details on JBI can be found here: http://www.jcp.org/en/jsr/detail?id=208

WS-*

Less ambitious than the process integration specifications described above, a number of web
services specifications are emerging to extend SOAP- and WSDL-based web services to include

reliability, security, statefulness, and quality of service. Typically identifiable by the "WS-" prefix,
these specifications build on the W3C technologies and each addresses a fairly specific problem.

Unfortunately the web services standards landscape has become muddled with competing
versions backed by competing vendor alliances, and perhaps as a result of this competition many
of these standards are rarely seen implemented in the wild today. A standards shake-out seems
to be looming. Nevertheless, these specifications are worth noting, as their idioms and tactics
might prove useful to application developers who are applying web services technologies like
SOAP and WSDL to messaging-based enterprise integration. These standards are also certain to
find a home in the products of the vendors who propose them, including those of IBM, BEA,
Microsoft, and Oracle.

A few of the more notable specifications in this category include those dealing with
transactability, reliability, routing, conversational state, and security. These are described below.

WS-Coordination and WS-Transaction

Being stateless and unreliable, the most popular web service protocols and transports do not
provide the quality of service required by transactional processes. This shortcoming blossoms
into a critically important problem. In practice, it means that if a developer wishes to use a web
service-based integration mechanism, that developer must grow his own transaction scheme
within those integration mechanisms. A collection of service invocations that occur through
asynchronous messaging must be capable of being batched atomically, so that the messages
function as unit that can fail or rollback all at once, or as a unit whose failure can trigger some
form of compensation. This is common in proprietary MOM systems. The Web Services
Coordination and Web Services Transaction specifications tackle this problem for web services.

WS-Coordination, drafted by BEA, Microsoft and IBM, specifies a way to create and propagate
contextual information by all of the services participating in a flow, even asynchronously and
over jagged time intervals. The specification describes an extensible framework for creating
protocols that coordinate the actions of applications and services. These coordination protocols
function by creating and registering XML-based contexts that are propagated with SOAP
messages and used by coordinators located at all endpoints in an interaction.

Such contexts can be used to support a number of application behaviors, such as those that need
to reach consistent agreement on the outcome of distributed transactions. Accordingly, the
WS-Transaction specification uses WS-Coordination to implement distributed transactability
across service invocations.

WS-Transaction defines a way to monitor and message the success or failure of each action in a
flow. Practically, this means that when a SOAP message arrives at an endpoint, the SOAP Header
containing the coordination context must be filtered and pulled from the message
(implementations may employ the Content Filter and Splitter patterns for this task) and then sent
to the transaction coordinator for interpretation.

The SOAP envelope excerpt below provides a simple example of a coordination context used for
making SOAP operations transactable through WS-Transaction. This context information in the
SOAP header is used by coordinators to register applications to receive transaction events such as
enlistments, the prepare stage of a two-phase commit process, rollbacks, and commits.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope">

 <SOAP-ENV:Header>

 <wscoor:CoordinationContext

 xmlns:wscoor="http://schemas.xmlsoap.org/ws/2002/08/wscoor"

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

 xmlns:myTransactableApp="http://foo.com/baz">

 <wsu:Identifier>http://foo.com/baz/bar</wsu:Identifier>

 <wsu:Expires>2004-12-31T18:00:00-08:00</wsu:Expires>

 <wscoor:CoordinationType>

 http://schemas.xmlsoap.org/ws/2002/08/wstx

 </wscoor:CoordinationType>

 <wscoor:RegistrationService>

 <wsu:Address>

 http://foo.com/coordinationservice/registration

 </wsu:Address>

 </wscoor:RegistrationService>

 <myTransactableApp:IsolationLevel>

 RepeatableRead

 </myTransactableApp:IsolationLevel>

 </wscoor:CoordinationContext>

 </SOAP-ENV:Header>

 <!-- SOAP BODY (snipped) -->

</SOAP-ENV:Envelope>

The WS-Transaction specification defines two coordination types for developers to use in their
applications: Atomic Transaction (AT) and Business Activity (BA).

Atomic Transactions map fairly well to traditional distributed transaction technology, such as XA.
They are useful for relatively short-lived operations in which locking of resources -- such as

threads and portions of data sources -- are acceptable, and in which absolute rollbacks make
sense. WS-Transaction provides a means of linking proprietary XA implementations, including
support for two-phase commit, to web services.

A Business Activity is typically a long-lived process that may consist of a number of atomic
transactions. A global rollback is usually not desirable in the event of a single failure condition in
a business activity; instead, a failure of one atomic transaction within a business activity should
often trigger another set of service invocations and message exchanges. These exchanges might
include compensation techniques to recover from the error in a way that preserves part of the
history of the business activity. An example is a business activity that includes the booking of an
airline flight, rental of a car, reservation of a hotel room, and reservation of theater tickets that a
user makes over a two- or three-day period. Each activity in this flow may be an atomic
transaction, and if one of the events should fail, the over-arching business activity of making the
travel arrangements should adjust via compensation rather than through coordinated rollback of
all atomic transactions.

The WS-Coordination and WS-Transaction specifications are promising attempts to provide
reliable, rich behaviors in the event of failures during service messaging. As they begin to wind
their way into products, they should take the burden off of developers to craft their own
transactability and contextual services around message-based service applications.

Information on WS-Transaction can be found here:
http://dev2dev.bea.com/technologies/webservices/ws-transaction.jsp

WS-Reliability and WS-ReliableMessaging

It is common for message-based interactions between web services to require reliable,
guaranteeable messaging even in the event of network, application, or component failures, and to
include persistence mechanisms and resend semantics. The most popular web service
technologies do not provide such reliability, however; SOAP without enhancements, for example,
isn't comprehensively useful in many enterprise messaging scenarios because its most popular
bindings don't reliably guarantee message delivery.

To remedy this, application developers are typically forced to implement reliability themselves
using the extensibility of web service mechanisms such as SOAP Headers. To eliminate the need
for application developers to take on this task, new standards are emerging to tackle web service
reliability. Two such specifications are WS-Reliability and WS-ReliableMessaging. As is common
in the nascent web services standards space, these two standards are competing, backed by
different groups of vendors aimed at the same problem domain.

Web Services Reliability (WS-Reliability) provides SOAP-based web services with the ability to
exchange messages asynchronously with guaranteed delivery, without duplicates, and with
message ordering. It is a SOAP standard for managing message aggregation and sequencing, and
provides a standard tactic for implementing theGuaranteed Delivery and Resequencer patterns,
among others. WS-Reliability leverages the SOAP Header mechanism to add the header elements

MessageHeader, ReliableMessage, MessageOrder, and RMResponse to SOAP messages. These
elements denote message identifiers such as group ids and sequence numbers, timestamps, time
to live values, message type values, sender and receiver information, and acknowledgment
callback information. WS-Reliability is produced by a number of vendors, including Sun, Oracle,
and Sonic, and it has been submitted to OASIS. It is heavily influenced by the functionality of the
ebXML Message Service (ebMS) described above.

To conform to WS-Reliability, the receiver of a SOAP message must respond with either a fault or
an acknowledgement using the RMResponse element in a SOAP header. If such an
acknowledgement is not received, then the sender will resend the same message using the same
message identifier. The sender is required to persist the message until its time to live value has
expired, or until acknowledgment or failure has occurred; the receiver is also required to persist
the message until it can be reliably transmitted to the application layer.

To ensure that once-and-only-once message behaviors are enforced, WS-Reliability provides a
sequence number mechanism which can be enabled based on application requirements. Separate
messages that are grouped together may share the same group identifier, but will advertise their
own sequence numbers within the SOAP header, allowing receivers to resequence the messages
before delivering them to the application.

The WS-Reliability specification can be found here:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsrm

The Web Services Reliable Messaging (WS-ReliableMessaging) specification describes a similar
protocol that allows messages to be delivered reliably between distributed applications in the
presence of failures. The protocol is described in an independent manner, allowing it to be
implemented using a variety of network transport technologies and bindings. The specification
does include one specific binding for SOAP. WS-ReliableMessaging is backed by BEA, IBM, and
Microsoft and has not yet been released to a standards body.

WS-ReliableMessaging operates on the same principles as WS-Reliability. It makes similar use of
acknowledgements, callbacks, identifiers, implies similar usage of persistent message caches, and
offers detailed fault messages. It ensures that messages are delivered according to any of four
basic delivery assurances: At most once, at least once, exactly once, and in order. An example of a
message sequence delivered through WS-ReliableMessaging is illustrated below.

Figure 3: WS-ReliableMessaging provides guaranteed sequential delivery through a series of

acknowledgment callbacks that rely on unique ID's inserted into the SOAP header element.

A key difference between the two competing reliability specifications is that
WS-ReliableMessaging includes usage of other critical web services specifications, such as
WS-Security and WS-Addressing. In practice, this means that WS-ReliableMessaging uses
specific idioms from other standards for supplying this information, whereas WS-Reliability
supports the features but does not yet insist on the idiomatic forms specified in the other new
standards.

More information on WS-ReliableMessaging can be found here:
http://dev2dev.bea.com/technologies/webservices/ws-reliablemessaging.jsp

WS-Conversation

Web Services Conversation (WS-Conversation) specifies a protocol for managing stateful
asynchronous message exchange between a sender and receiver, usually across two SOAP
endpoints. In contrast to relying on an encapsulating business process component for managing
stateful message exchange among multiple partners, this proposal provides a simple means of

accomplishing the same thing between a single client and single service (where the client may
also be a service).

The protocol leverages the SOAP Header mechanism to send identifiers, or token ids, along with
SOAP messages. When a stateful conversation is begun, the <StartHeader> element is used to
supply a conversation identifier and callback URI. Subsequent messages that are part of the same
conversation use the <ContinueHeader> and the <CallbackHeader> for further requests and
replies, and these elements will include the same identifier established when the conversation
was started.

The SOAP Header mechanism can be used to implement these patterns without use of these
standard mechanisms, though there is benefit in establishing a common mechanism for clients
and services across platforms. It is a formalization of the Aggregator and Composed Message
Processor patterns using Correlation Identifier for the purposes of mapping multiple messages to a
single session.

The approach of externalizing state management through a process component or choreography
seems more promising for larger-scale integration projects where it is useful for simplicity's sake
to consider the services and components as black boxes, but WS-Conversation is an example of
what can be done when greater control over the services and clients is possible.

WS-Security

While standards such as WS-ReliableMessaging, WS-Coordination, and WS-Addressing provide
various mechanisms that identify the sender of a message, none of those specifications guarantee
that the sender actually owns the identity it claims. The elements of the WS-I Basic Profile -- XML
Schema, SOAP, WSDL and UDDI -- make no mention of how identity is verified and guaranteed,
or how message integrity is to be maintained. Early adopters of web services either kept their
services open and available to all, or developed proprietary security protocols in order to fill this
gap. The proprietary and private approaches created an undesirable coupling between message
senders and receivers, something particuarly galling in otherwise asynchronous and loosely
coupled federations of message nodes.

WS-Security, also referred to as the Web Services Security Language, is the proposed standard
means of addressing these issues. Of all the WS-* specifications, it enjoys perhaps the broadest
level of consensus among the major web service platform vendors. Created by a consortium
consisting of Microsoft, IBM, and Verisign, it is now part of OASIS; it has received votes of
confidence from the likes of Sun, BEA, Intel, SAP, IONA, RSA Security, and others.

WS-Security does not propose new security technologies, but rather it bridges SOAP and existing
security technologies. It provides a generic, extensible means of associating security tokens with
SOAP messages and propagating those tokens to SOAP endpoints. It also specifies the standard
approach to encoding binary security tokens, such as digital certificates and Kerberos tickets, in
SOAP messages. It does not describe specific fixed protocols, but rather establishes a general set
of mechanisms for implementing any number of security protocols and incorporating any

number of trust domains, signature formats, and encryption technologies. In as much as it can
include use of digital certificates, digests, and implementations of technologies such as PKI,
Kerberos, SSL and the like, WS-Security represents a way to apply familiar Internet security
standbys to SOAP endpoints.

In addition to verification of sender identity, WS-Security may also protect message integrity --
that is, protect it from intermediary prying eyes during network transmission -- by leveraging the
W3C XML Signature and XML Encryption standards. In cases in which intermediary actors and
third party services are not involved, however, the use of HTTPS is a common alternative means
of protecting SOAP messages in transit.

The security model specifies that a SOAP message sender makes a series of claims such as the
sender's identity, group, privilege, and the like. These claims are collected in the form of a signed
security token. The receiver of the message is charged with endorsing the claims. The tokens and
signatures are carried in a SOAP Header block, specifically under the <security> header element
in the WS-Security namespace. If an error occurs when the receiver endorses claims, that error
will be one of two types: "unsupported" errors, which indicate that the endpoint does not support
a particular token or encryption algorithm; and "failure" errors, which indicate most other errors,
including all those related to invalid tokens and signatures. The specification does not mandate
that failure errors always be reported, as they may be the result of an attack. When errors are
reported, they take the form of SOAP Faults with fault codes defined in the specification.

The WS-Security specification can be found on the web sites of each of its co-authoring vendors,
including the following location at IBM:
http://www-106.ibm.com/developerworks/library/ws-secure/

WS-Addressing, WS-Policy other WS- Specifications

There are a number of other proposed "WS-" specifications with varying degrees of support and
acceptance. Some are quite narrow in scope, such as WS-Addressing which defines XML
elements to identify web service endpoints in messages. This specification aims to support
messaging through intermediaries such as endpoint managers, proxies, firewalls, and gateways
in a transport-neutral manner. Essentially, WS-Addressing is a standard way to denote who a
message is from ("From:") and who it is to ("To:"). It provides a means to plug SOAP-based web
services into Recipient List solutions. As it provides a means of specifying where to direct a reply,
it appears destined to be the standard web services approach to resolving the issues raised in
Return Address.

A means of supplying metadata about services, the Web Services Policy Framework (WS-Policy)
offers a syntax for describing the policies of a web service. Such policies include service
requirements, preferences, capabilities, and quality of service metadata. The accompanying Web
Services Policy Assertions Language (WS-PolicyAssertions) specifies a means of asserting that a
message or service endpoint supports a particular policy. It involves investigating the WS-Policy
declarations in search of a specific required policy. Finally, the Web Services Policy Attachment
(WS-PolicyAttachment) describes how these policy standards fit into existing web service

technologies. It specifies how to associate policy expressions with WSDL type definitions and
UDDI entities, and it defines how to associate implementation-specific policies with all or part of
a WSDL portType.

New WS-* specifications are surfacing quickly as vendors race to formalize the implementation
practices that application developers are following, staking a claim to valuable web service
intellectual property in the process. Wise application developers will keep an eye on interesting
standards and cull idioms from them when useful, but will also bear in mind that the pattern and
not the implementation idiom is most important to crafting a message-based application. The
emerging WS- standards are not yet required for implementing interoperable enterprise
messaging systems, and where they become hindrances or distractions, they should boldly be
ignored until mature.

Summary

At their best, standards extend the reach of design patterns by ensuring that different
implementations of the same pattern are interoperable. Many efforts are underway to extend
messaging patterns through web service standards; many of these standards focus on the
composition and behavior of workflow components called business process components.
Standards such as BPEL, WSCI, and the WS-* specifications tackle many of the problems
described in this book, and implement several of the patterns in this pattern language.

Still, the emerging standards stories are occasionally conflicting and can be confusing. They're
certainly not all ready for prime time. When applying a pattern, an application developer should
avoid getting bogged down by standards and stay focused instead on the particular use cases at
hand. Take a look at how certain standards are approaching a problem, and adopt those tactical,
idiomatic implementations of a pattern if it makes sense, or if it's helpful during implementation
-- regardless of whether the approach is standardized across vendor products. Developers can
also provide feedback to standards organizations to challenge, criticize, and otherwise ensure
that standards become practically useful and not academic or vendor exercises. As standards
mature, architects are wise to consider how their use might extend enterprise integration
solutions to broader, less risky, less costly, and more powerful levels of sophistication.

Bibliography

Alexander

C. Alexander, S. Ishikawa, M Silverstein, A Pattern Language - Towns Buildings
Construction, Oxford University Press, 1977, ISBN: 0195019199
Probably the most quoted book in any work related to patterns. I actually used

a number of Alexander's patterns to design a beach house for an interior

architecture class. It is interesting to note that Alexander's desire to dissect

architecture and design into a set of composable constructs may stem from his

study of mathematics. His thesis published as "Notes on the synthesis of form"

references a set of programs that he developed in IBM 7090 assembly code. So

the tremendous success of Alexander's patterns in the software community is not

quite coincidental.

Alpert

S. Alpert, K. Brown, B. Woolf, The Design Patterns Smalltalk Companion,
Addison-Wesley, 1998, ISBN: 0201184621

Box

Don Box, Essential .NET, Volume 1: the Common Language Runtime, Addison-Wesley,
2002, ISBN: 0201734117

More than you ever wanted to know about the inner workings of the CLR...

BPEL4WS

Business Process Execution Language for Web Services, Version 1.0,
http://www.ibm.com/developerworks/webservices/library/ws-bpel

CSP

C. A. R. Hoare, Communicating Sequential Processes, Communications of the ACM ,
1978, http://doi.acm.org/10.1145/359576.359585

ACM on-line library access is required to see the full-text version of this

article.

CoreJ2EE

Alur, Crupi, Malks, Core J2EE Patterns: Best Practices and Design Strategies
(2nd Edition), Prentice Hall PTR, 2003, ISBN: 0131422464

Dickman

Alan Dickman, Designing Applications with MSMQ, Addison-Wesley, 1998, ISBN:
0201325810

Douglass

Bruce Powel Douglass, Real-Time Design Patterns, Addison-Wesley, 2003, ISBN:

0201699567

This book proves the transportability of patterns across domains. Some of

Douglass' reliability patterns prove very useful in the context of enterprise

messaging.

EAA

Martin Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley,
2003, ISBN: 0321127420

The most comprehensive book yet on application architecture patterns. Even

though it covers 51 patterns, it is an easy and interesting read while never

sacrificing technical accuracy. OK, just buy the dang book :-)

EJB20

Enterprise JavaBeans Specification, Version 2.0,
http://java.sun.com/products/ejb/docs.html

Garlan

Mary Shaw, Garlan David, Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall, 1996, ISBN: 0131829572

GoF

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995, ISBN:
0201633612

Surely the second most quoted book in any work on patterns.

Graham02

Steve Graham, Simon Simeonov, Toufic Boubez, Glen Daniels, Doug Davis, Yuichi

Nakamura, Ryo Nyeama, Building Web Services with Java: Making Sense of XML, SOAP
and UDDI, SAMS Publishing, 2002, ISBN: 0672321815

Hohmann

Luke Hohmann, Beyond Software Architecture: Creating and Sustaining Winning
Solutions, Addison-Wesley, 2003, ISBN: 0201775948

Hapner

Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, Kim Haase, Java
Messaging Service API Tutorial and Reference, Addison-Wesley, 2002, ISBN:
0201784726

JMS

Java Message Service (JMS), Sun Microsystems,
http://java.sun.com/products/jms/

JMS11

Java Message Service (the Sun Java Message Service (JMS) 1.1 Specification),
Sun Microsystems, http://java.sun.com/products/jms/docs.html

JTA

Transactions and Java Technology, http://java.sun.com/j2ee/transactions.html

Kahn

G. Kahn, The Semantics of a Simple Language for Parallel Programming, Information
Processing 74: Proc. IFIP Congress 74, North-Holland Publishing Co., 1974,

Kaye

Doug Kaye, Loosely Coupled: The Missing Pieces of Web Services, RDS Press, 2003,
ISBN: 1881378241

A refreshing look at Web services. Instead of wading through APIs we get to read

about the core principles at work in Service-Oriented Architectures in a

technology-neutral jargon-free way. This book is likely too high-level for

developers itching to make that SOAP call but it is ideal for technical managers

and architects who have to explain these concepts to non-techies.

Kent

William Kent, Data and Reality, 1stBooks, 2000, ISBN: 1585009709
A classic book (the original edition is from 1978) that tells us why modeling

reality inside a computer system is so hard. You can hardcover at Amazon for

$45, but 1stBooks offers an electronic version for $8.95 or a $30 paperback

version at http://www.1stbooks.com.

Lewis

Rhys Lewis, Advanced Messaging Applications with MSMQ and MQSeries, Que, 2000,
ISBN: 078972023X

Leyman

Frank Leyman, et al., Production Workflow: Concepts and Techniques,
Prentice-Hall PTR, 1999, ISBN: 0130217530

MDMSG

Multiple-Destination Messaging, http://msdn.microsoft.com/library/

Monson-Haefel

Richard Monson-Haefel and David A. Chappell, Java Message Service, O’Reilly,

2001, ISBN: 0596000685

MicroWorkflow

Dragos Manolescu, Micro-Workflow: A Workflow Architecture Supporting

Compositional Object-Oriented Software Development,
http://micro-workflow.com/PhDThesis/phdthesis.pdf

Monroe

Robert T. Monroe, Drew Kompanek, Ralph Melton, David Garlan, Stylized
Architecture, Design Patterns, and Objects, 1996,
http://www-2.cs.cmu.edu/afs/cs/project/compose/ftp/pdf/ObjPatternsArch-ieee

97.pdf

MQSeries

MQSeries from IBM, http://www.ibm.com/software/mqseries

MSMQ01

Microsoft Message Queuing (MSMQ), http://www.microsoft.com/msmq

POSA

Buschmann et al, Pattern-Oriented Software Architecture, Wiley, 1996, ISBN:
0471958697

A great book on architecture and design patterns.

POSA2

Schmidt et al, Pattern-Oriented Software Architecture Vol.2, Wiley, 2000, ISBN:
0471606952

More patterns focused on distributed systems and concurrency issues.

PatternForms

Pattern Forms, Wiki-Wiki-Web, http://c2.com/cgi-bin/wiki?PatternForms
A list of commonly used pattern forms and their differences.

PLOPD1

James Coplien, Douglas Schmidt (Editor), Pattern Languages of Program Design,
Addision-Wesley, 1995, ISBN: 0201607344

The proceedings from the first PLoP conference. These proceedings contain a lot

of papers that formed the basis for later books, such as POSA. This volume

contain's Frank Buschmann's and Regine Meunier's "A System of Patterns", Regine

Meunier's "The Pipes and Filters Architecture", and Diane Mularz' "Pattern-Based

Integration Architectures".

Sharp

Alec Sharp, Patrick McDermott , Workflow Modeling: Tools for Process Improvement
and Application Development, Artech House, 2001, ISBN: 1580530214
This book focuses on the modeling aspect of workflow -- an interesting read for

analysts and business architects alike.

SOAP 1.1

W3C Simple Object Access Protocol (SOAP) 1.1 Specification,
http://www.w3.org/TR/SOAP/

SOAP 1.2 Part 2

SOAP Version 1.2 Part 2: Adjuncts, http://www.w3.org/TR/soap12-part2/

Stevens

W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley,
1994, ISBN: 0201633469

SysMsg

System.Messaging Namespace in the .NET Framework SDK, Microsoft,
http://msdn.microsoft.com/library/

Tennison

Jeni Tennison, XSLT and XPath On The Edge, John Wiley & Sons, 2001, ISBN:
0764547763

UML

UML Distilled: A Brief Guide to the Standard Object Modeling Language, Third
Edition, Addison-Wesley, 2003, ISBN: 0321193687

UMLEAI

UML Profile for Enterprise Application Integration, Object Management Group ,
2002, http://cgi.omg.org/cgi-bin/doc?ptc/02-02-02

Wright

Gary R. Wright, W. Richard Stevens, TCP/IP Illustrated, Volume 2: The
Implementation, Addison-Wesley, 1995, ISBN: 020163354X

WSAUS

Web Services Architecture Usage Scenarios, W3C,
http://www.w3.org/TR/ws-arch-scenarios/

WSDL 1.1

Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl

WSFL

Web Services Flow Language, IBM,
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

WSMQ

WebSphere MQ Using Java, IBM,
http://publibfp.boulder.ibm.com/epubs/pdf/csqzaw11.pdf

XML 1.0

Extensible Markup Language (XML) 1.0 (Second Edition),
http://www.w3.org/TR/REC-xml

XSLT 1.0

XSL Transformations (XSLT) Version 1.0 -- W3C Recommendation,
http://www.w3.org/TR/xslt

Waldo

Waldo, J., Wyant, G., Wollrath, A., and Kendall, S., A Note on Distributed
Computing, Technical Report SMLI TR-94-29, Sun Microsystems Laboratories,
November 1994, http://citeseer.nj.nec.com/waldo94note.html

Zahavi

Ron Zahavi, Enterprise Application Integration with CORBA , John Wiley & Sons,
1999, ISBN: 0471327204

	Table of Content
	Foreword
	Foreword
	Preface
	Who Should Read This Book
	What You Will Learn
	What This Book Does Not Cover
	How This Book Is Organized
	Acknowledgements
	About the Cover Picture

	Introduction
	What is Messaging?
	What is a Messaging System?
	Why Use Messaging?
	Challenges of Asynchronous Messaging
	Thinking Asynchronously
	Distributed Applications vs. Integration
	Commercial Messaging Systems
	Pattern Form
	Diagram Notation
	Examples and Interludes
	Organization of this Book
	Getting Started
	Supporting Web Site
	Summary

	1 Solving Integration Problems using Patterns
	The Need for Integration
	Integration Challenges
	How Integration Patterns Can Help
	The Wide World of Integration
	Loose Coupling
	1 Minute EAI
	A Loosely Coupled Integration Solution
	Widget- Gadget Corp -- An Example
	Summary

	2 Integration Styles
	Introduction
	Application Integration Criteria
	Application Integration Options
	File Transfer
	Shared Database
	Remote Procedure Invocation
	Messaging

	3 Messaging Systems
	Introduction
	Message Channel
	Message
	Pipes and Filters
	Message Router
	Message Translator
	Message Endpoint

	4 Messaging Channels
	Introduction
	Point- to- Point Channel
	Publish- Subscribe Channel
	Datatype Channel
	Invalid Message Channel
	Dead Letter Channel
	Guaranteed Delivery
	Channel Adapter
	Messaging Bridge
	Message Bus

	5 Message Construction
	Introduction
	Command Message
	Document Message
	Event Message
	Request- Reply
	Return Address
	Correlation Identifier
	Message Sequence
	Message Expiration
	Format Indicator

	6 Interlude Simple Messaging
	Introduction
	JMS Request/ Reply Example
	.NET Request/ Reply Example
	JMS Publish/ Subscribe Example

	7 Message Routing
	Introduction
	Content- Based Router
	Message Filter
	Dynamic Router
	Recipient List
	Splitter
	Aggregator
	Resequencer
	Composed Message Processor
	Scatter- Gather
	Routing Slip
	Process Manager
	Message Broker

	8 Message Transformation
	Introduction
	Envelope Wrapper
	Content Enricher
	Content Filter
	Claim Check
	Normalizer
	Canonical Data Model

	9 Interlude Composed Messaging
	Introduction
	Synchronous Implementation using Web Services
	Asynchronous Implementation with MSMQ
	Asynchronous Implementation with TIBCO
	ActiveEnterprise

	10 Messaging Endpoints
	Introduction
	Messaging Gateway
	Messaging Mapper
	Transactional Client
	Polling Consumer
	Event- Driven Consumer
	Competing Consumers
	Message Dispatcher
	Selective Consumer
	Durable Subscriber
	Idempotent Receiver
	Service Activator

	11 System Management
	Introduction
	Control Bus
	Detour
	Wire Tap
	Message History
	Message Store
	Smart Proxy
	Test Message
	Channel Purger

	12 Interlude System Management Example
	Loan Broker System Management

	13 Integration Patterns in Practice
	Case Study: Bond Trading System
	Architecture with Patterns

	14 Concluding Remarks
	Emerging Standards and Futures in Enterprise
	Integration

	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

