
Enterprise Integration Patterns: 
Designing, Building, and Deploying 

Messaging Solutions



Chapter 1: Solving 
Integration Problems Using 

Patterns

2



Introduction

• The Need for Integration

• Integration Challenges

• How Integration Patterns Can Help?

• The “patterns” are not copy-paste code samples or shrink-wrap components, but 
rather nuggets of advice that describe solutions to frequently recurring problems.

• Used properly, the integration patterns can help fill the wide gap between the high-
level vision of integration and the actual system implementation. 

Chapter 1 Solving Integration Problems Using Patterns - Presented by Hassan.Tanabi@Gmail.com 3



Tight coupling vs Loosely Coupled

• Connect the two systems is through the TCP/IP protocol

Chapter 1 Solving Integration Problems Using Patterns - Presented by Hassan.Tanabi@Gmail.com 4



Tight coupling

• In summary, our minimalist integration solution is fast and cheap, but it 
results in a very brittle

• solution because the two participating parties make the following 
assumptions about each other:

• Platform Technology – internal representations of numbers and objects

• Location – hard-coded machine addresses

• Time – all components have to be available at the same time

• Data Format – the list of parameters and their types must match

Chapter 1 Solving Integration Problems Using Patterns - Presented by Hassan.Tanabi@Gmail.com 5



A Loosely Coupled Integration Solution

Chapter 1 Solving Integration Problems Using Patterns - Presented by Hassan.Tanabi@Gmail.com 6

In order to connect two systems via an integration solution, a number of things have to happen.
These things make up what we call middleware – the things that sit between applications. 



A Loosely Coupled Integration Solution (cont’d)

• Communications channel that can move information from one application 
to the other. This channel could be a series of TCP/IP connections, a shared 
file, a shared database or a floppy disk being carried from one computer to 
the next.

• A snippet of data that has an agreed-upon meaning to both applications 
that are to be integrated. This piece of data can be very small, such as the 
phone number of a single customer that has changed, or very large, such as 
the complete list of all customers and their associated addresses. We call 
this piece of data a message.

Chapter 1 Solving Integration Problems Using Patterns - Presented by Hassan.Tanabi@Gmail.com 7



A Loosely Coupled Integration Solution (cont’d)

• Because the internal data format of an application can often not be changed 
the middleware needs to provide some mechanism to convert one 
application’s data format in the other’s. We call this step translation.

• Like Customer Full Name vs Customer First Name and Last Name

• What happens if we integrate more than two systems? Where does the data 
have to be moved?

• Things would be a lot easier of the middleware could take care of sending messages to 
the correct places. This is the role of a routing component such as a message broker. 

Chapter 1 Solving Integration Problems Using Patterns - Presented by Hassan.Tanabi@Gmail.com 8



A Loosely Coupled Integration Solution (cont’d)

• In order to have any idea what is going on inside the system we need a 
systems management function. This subsystem monitors the flow of data, 
makes sure that all applications and components are available and reports 
error conditions to a central location.

• Most packaged and legacy applications and many custom applications are 
not prepared to participate in an integration solution. We need a message 
endpoint to connect the system explicitly to the integration solution. The 
endpoint can be a special piece of code or a Channel Adapter provided by an 
integration software vendor.

Chapter 1 Solving Integration Problems Using Patterns - Presented by Hassan.Tanabi@Gmail.com 9



Chapter 2: Integration 
Styles 

10



Application Integration Options

• File Transfer

• An enterprise has multiple applications that are being built independently, with 
different languages and platforms.

• To have any chance of getting your head around it, you must minimize what you need 
to know about how each application works

• Produce the files at regular intervals according to the nature of the business.

• The modern fashion is to use XML.

Updates tend to occur infrequently, as a result systems can get out of synchronization

Chapter 2: Integration Styles - Presented by Hassan.Tanabi@Gmail.com 11



Application Integration Options (cont’d)

• Shared Database

• The enterprise needs information to be shared rapidly and consistently.

• If a family of integrated applications all rely on the same database, then you can be 
pretty sure that they are always consistent all of the time.

Coming up with a unified schema that can meet the needs of multiple applications is a 
very difficult exercise

Human conflicts between departments often exacerbate this problem.

cause performance bottlenecks and even deadlocks as each application locks others 
out of the data

Chapter 2: Integration Styles - Presented by Hassan.Tanabi@Gmail.com 12



Application Integration Options (cont’d)

• Remote Procedure Invocation

• The enterprise needs to share data and processes in a responsive way

• What is needed is a mechanism for one application to invoke a function in another 
application

There are big differences in performance and reliability between remote and local 
procedure calls

The applications are still fairly tightly coupled together

Chapter 2: Integration Styles - Presented by Hassan.Tanabi@Gmail.com 13



Application Integration Options (cont’d)

• Messaging

• File Transfer and Shared Database enable applications to share their data, but not their 
functionality.

• Remote Procedure Invocation enables applications to share functionality, but tightly 
couples them in the process

• Asynchronous messaging is fundamentally a pragmatic reaction to the problems of 
distributed systems

• Sending a message does not require both systems to be up and ready at the same 
time. 

Chapter 2: Integration Styles - Presented by Hassan.Tanabi@Gmail.com 14



Chapter 3: Messaging 
Systems

15



Introduction

• Messaging makes applications loosely coupled by communicating 
asynchronously

• Also makes the communication more reliable because the two applications 
do not have to be running at the same time

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 16



Basic Messaging Concepts

• Channels — Messaging applications transmit data through a Message 
Channel, a virtual pipe that connects a sender to a receiver.

• Messages — A Message is an atomic packet of data that can be transmitted 
on a channel. Thus to transmit data, an application must break the data into 
one or more packets, wrap each packet as a message, and then send the 
message on a channel. Likewise, a receiver application receives a message 
and must extract the data from the message to process it.

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 17



Basic Messaging Concepts (cont’d)

• Multi-step delivery — In the simplest case, the message system delivers a 
message directly from the sender’s computer to the receiver’s computer. 
However, actions often need to be performed on the message after it is sent 
by its original sender but before it is received by its final receiver.

• Routing — In a large enterprise with numerous applications and channels to 
connect them, a message may have to go through several channels to reach 
its final destination.

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 18



Basic Messaging Concepts (cont’d)

• Transformation — Various applications may not agree on the format for the 
same conceptual data; the sender formats the message one way, yet the 
receiver expects it to be formatted another way.

• Endpoints — An application does not have some built-in capability to 
interface with a messaging system. Rather, it must contain a layer of code 
that knows both how the application works and how the messaging system 
works, bridging the two so that they work together.

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 19



Message Channel 

• The messaging system isn't a big bucket that applications throw 
information into and pull information out of. It's a set of connections that 
enable applications to communicate by transmitting information in 
predetermined, predictable ways.

• When an application has information to communicate, it doesn't just fling 
the information into the messaging system, it adds the information to a 
particular Message Channel.

• An application receiving information doesn't just pick it up at random from 
the messaging system; it retrieves the information from a particular 
Message Channel. 

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 20



Message Channel (cont’d) 

• The messaging system has different Message Channels for different types 
of information the applications want to communicate. When an application 
sends information, it doesn't randomly add the info to any channel 
available; it adds the info to a channel whose specific purpose is to 
communicate that sort of information. 

• Channels are logical addresses in the messaging system

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 21



Message Channel (cont’d) 

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 22



Message 

• Data isn't one continuous stream; it is units, such as records, objects, database 
rows, and the like.

• Channel must transmit units of data

• Any data that is to be transmitted via 

a messaging system must be converted 

into one or more messages that can be sent through messaging channels. 

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 23



Message (cont’d)

• A message consists of two basic parts: 

1. Header – Information used by the messaging system that describes the data being 
transmitted, its origin, its destination, and so on.

2. Body – The data being transmitted; generally ignored by the messaging system and 
simply transmitted as-is. 

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 24



Pipes and Filters

• In many enterprise integration scenarios, a single event triggers a sequence 
of processing steps, each performing a specific function.

• Authentication, Decryption, …

• A component can send a message to another component for further 
processing without waiting for the results.

• Using this technique, we could process multiple messages in parallel, on 
inside each component.

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 25



Pipes and Filters (cont’d)

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 26



Pipes and Filters (cont’d)

• Each filter exposes a very simple interface: it receives messages on the 
inbound pipe, processes the message, and publishes the results to the 
outbound pipe.

• We can add new filters, omit existing ones or rearrange them into a new 
sequence -- all without having to change the filters themselves. 

• Many patterns, e.g. routing and transformation patterns, are based on this 
Pipes and Filters architectural style.

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 27



Pipeline Processing

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 28



Parallel Processing 

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 29

• This configuration can cause messages to be processed out of order. 

• Parallelizing filters works best if each filter is stateless



Message Router

• How can you decouple individual processing steps so that messages can be passed 
to different filters depending on a set of conditions? 

• Insert a special filter, a Message Router, which consumes a Message from one 
Message Channel and republishes it to a different Message Channel depending on 
a set of conditions. 

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 30



Message Router (cont’d)

• Thanks to the Pipes and Filters architecture the components surrounding 
the Message Router are completely unaware of the existence of a Message 
Router.

• Message Router does not modify the message contents. It only concerns 
itself with the destination of the message. 

• The key benefit of using a Message Router is that the decision criteria for 
the destination of a message are maintained in a single location. 

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 31



Message Router (cont’d)

• It can degrade performance, a performance bottleneck.

• By using multiple routers in parallel or adding additional hardware, this effect can be 
minimized.

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 32



Message Router Variants

• Fixed router

• Only a single input channel and a single output channel are defined

• Useful to intentionally decouple subsystems

• Content-Based Router

• Decide the message's destination only on properties of the message itself

• Context-Based Routers

• Decide the message's destination based on environment conditions

• used to perform load balancing

• Test or failover functionality

• Stateless vs Stateful

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 33



Message Translator

• How can systems using different data formats communicate with each 
other using messaging? 

• We could avoid having to transform messages if we could modify all 
applications to use a common data format!!! (Difficult)

• Changing an application’s data format is risky, difficult, and requires a lot of changes to 
inherent business functionality

• Data format changes are simply not economically feasible

• Modifying one application to match another application's data format would 
violate loose coupling because it makes two applications directly dependent on 
each other's internal representation

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 34



Message Translator (cont’d)

• We could incorporate the data format translation directly into the Message 
Endpoint.

• Requires access to the endpoint code

• Hard-coding the format translation to the endpoint would reduce the opportunities for 
code reuse

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 35



Message Translator (cont’d)

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 36

Use a special filter, a Message Translator, between other filters 
or applications to translate one data format into another. 



Levels of Transformation

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 37

provides data transfer between the different 
systems. It is responsible for complete and 

reliable data transfer across different 
network segments and deals with lost data 

packets and other network errors.

In order to interface systems with different 
data representations, data may have to be 

decrypted, uncompressed and parsed, then 
the new data format rendered, and possibly 

compressed and encrypted as well.

The application used by one department may divide the 
country into 4 regions: Western, Central, Southern and 

Eastern, identified by the letters ‘W”, ‘C’, ‘S’ and ‘E’. Another 
department may differentiate the Pacific Region from the 

Mountain Region and distinguishes the Northeast from the 
Southeast. Each region is identifies by a unique two-digit 
number. What number does the letter ‘E’ correspond to? 

This is the domain of entity-relationship 
diagrams and class diagrams.



Chaining Transformations

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 38

Many business scenarios require transformations at 
more than one layer



Message Endpoint

• How does an application connect to a messaging channel to send and 
receive messages?

• The messaging endpoint code takes command or data, makes it into a 
message, and sends it on a particular messaging channel. It is the endpoint 
that receives a message, extracts the contents, and gives them to the 
application in a meaningful way.

• Encapsulates the messaging system from the rest of the application

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 39



Message Endpoint (cont’d)

• An endpoint is channel-specific, so a single application would use multiple 
endpoints to interface with multiple channels.

• An application may use more than one endpoint to interface to a single 
channel, usually to support multiple concurrent threads. 

Chapter 3: Messaging Systems - Presented by Hassan.Tanabi@Gmail.com 40



Chapter 4: Messaging 
Channels 

41



Introduction

• By selecting a particular channel to send the data on, the sender knows that 
the receiver will be one that is looking for that sort of data by looking for it 
on that channel.

• In this way, the applications that produce shared data have a way to 
communicate with those that wish to consume it.

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 42



Message Channel Themes

• If an application has data to transmit or data it wishes to receive, it will have 
to use a channel.

• The challenge is knowing what channels your applications will need and 
what to use them for.

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 43



Message Channel Themes (cont’d)

• Fixed set of channels

• When designing an application, a developer has to know where to put what types of 
data to share that data with other applications, and likewise where to look for.

• Determining the set of channels

• Unidirectional channels

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 44



Message Channel Decisions 

• One-to-one or one-to-many

• To send the data to a single application, use a Point-to-Point Channel

• If you want all of the receiver applications to be able to receive the data, use a Publish-
Subscribe Channel. When you send a piece of data this way, the channel effectively 
copies the data for each of the receivers

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 45



Message Channel Decisions (cont’d) 

• What type of data

• Datatype Channel is the principle that all of the data on a channel has to be of the same 
type. This is the main reason why messaging systems need lots of channels;

• Invalid and dead messages

• The message system can ensure that a message is delivered properly, but it cannot 
guarantee that the receiver will know what to do with it

• Put the strange message on a specially designated Invalid Message Channel, in hopes 
that some utility monitoring the channel will pick up the message and figure out what 
to do with it.

• A Dead Letter Channel for messages which are successfully sent but ultimately cannot 
be successfully delivered

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 46



Message Channel Decisions (cont’d) 

• Crash proof

• If the messaging system crashes or is shut down for maintenance, what happens to its 
messages?

• Non-messaging clients

• Sometimes the "non-messaging client" really is a messaging client, just for a different 
messaging system. In that case, an application that is a client on both messaging 
systems can build a Messaging Bridge between the two, effectively connecting them 
into one composite messaging system.

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 47



Message Channel Decisions (cont’d) 

• Communications backbone

• A new application simply needs to know which channels to use to request functionality 
and which others to listen on for the results

• The messaging system itself essentially becomes a Message Bus, a backbone providing 
access to all of the enterprise’s various and ever-changing applications and 
functionality

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 48



Point-to-Point Channel

• How can the caller be sure that exactly one receiver will receive the 
document or perform the call?

• Once a call is packaged as a Message and placed on a Message Channel, 
potentially many receivers could see it on the channel and decide to 
perform the procedure.

• A Point-to-Point Channel ensures that only one receiver consumes any given 
message.

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 49



Publish-Subscribe Channel

• How can the sender broadcast an event to all interested receivers?

• Each subscriber needs to be notified of a particular event once, but should 
not be notified repeatedly of the same event. The event cannot be 
considered consumed until all of the subscribers have been notified

• Send the event on a Publish-Subscribe Channel, which delivers a copy of a 
particular event to each receiver.

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 50



Publish-Subscribe Channel (cont’d)

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 51



Datatype Channel 

• How can the application send a data item such that the receiver will know 
how to process it? 

• All messages are just instances of the same message type, as defined by the 
messaging system, and the contents of any message are ultimately just a 
byte array.

• It is not specific enough for a receiver to be able to process a message’s 
contents. 

• The receiver must know what type of messages it’s receiving, or it doesn’t 
know how to process them

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 52



Datatype Channel (cont’d)

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 53



Invalid Message Channel

• The message body may cause parsing errors, lexical errors, or validation 
errors. The message header may be missing needed properties.A sender 
might put a perfectly good message on the wrong channel.A malicious 
sender could purposely send an incorrect message just to mess-up the 
receiver.

• It could put the message back on the channel!

• But then the message will just be re-consumed by the same receiver or another like it

• A way to clean improper messages out of channels and put them 
somewhere out of the way

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 54



Invalid Message Channel (cont’d)

• The receiver should move the improper message to an Invalid Message 
Channel, a special channel for messages that could not be processed by 
their receivers.

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 55



Dead Letter Channel 

• What will the messaging system do with a message it cannot deliver? 

• The message’s channel may be deleted after the message is sent 

• The message may expire before it can be delivered 

• A message with a Selective Consumer that everyone ignores will never be read and 
may eventually die

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 56



Dead Letter Channel (cont’d)

• When a messaging system 
determines that it cannot 
or should not deliver a 
message, it may elect to 
move the message to a 
Dead Letter Channel. 

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 57



Guaranteed Delivery 

• How can the sender make sure that a message will be delivered, even if the 
messaging system fails? 

• The store and forward process that messaging is based on

• So where should the message be stored before it is forwarded? in memory?!!

• If the messaging system crashes (for example, because one of its computers loses 
power or the messaging process aborts unexpectedly), all of the messages stored in 
memory are lost. 

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 58



Guaranteed Delivery (cont’d)

• Use files and databases to persist data to disk so that it survives system 
crashes. 

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 59



Channel Adapter 

• How can you connect an application to the messaging system so that it can 
send and receive messages? 

• Most applications were not designed to work with a messaging 
infrastructure. 

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 60



Channel Adapter (cont’d)

• Use a Channel Adapter that can access the application's API or data and 
publish messages on a channel based on this data, and that likewise can 
receive messages and invoke functionality inside the application. 

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 61



Channel Adapter (cont’d)

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 62

screen scraping

API

extract information 
directly from the database 



Messaging Bridge 

• How can multiple messaging systems be connected so that messages 
available on one are also available on the others? 

Chapter 4: Messaging Channels - Presented by Hassan.Tanabi@Gmail.com 63

Use a Messaging Bridge, a connection 
between messaging systems, to 
replicate messages between systems. 


